Quiz 1 Solutions, Math 246, Professor David Levermore Tuesday, 3 February 2009

(1) [4] For each of the following ordinary differential equations, give its order and state whether it is linear or nonlinear.
(a) $\frac{\mathrm{d}^{3} v}{\mathrm{~d} z^{3}}+e^{v} \frac{\mathrm{~d} v}{\mathrm{~d} z}+4 v=0$;
Solution: third-order, nonlinear.
(b) $e^{x} \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin (x)+x^{2} y$.

Solution: fourth-order, linear.
(2) [2] Give the interval of existence for the solution of the initial-value problem

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}+\frac{1}{t^{2}-9} z=\tan (t), \quad z(2)=5
$$

(You do not have to solve this equation to answer this question!)
Solution: This problem is linear in z and is already in normal form. The coefficient $1 /\left(t^{2}-9\right)$ is continuous everywhere except where $t= \pm 3$, while the forcing $\tan (t)$ is continuous everywhere except where $t=\frac{\pi}{2}+n \pi$ for some integer n. You can therefore read off that the interval of existence is $\left(\frac{\pi}{2}, 3\right)$, the endpoints of which are the singularities of $\tan (t)$ and $1 /\left(t^{2}-9\right)$ respectively that bracket the initial time 2 .
(3) [4] Solve the initial-value problem

$$
\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y+1+x^{2}, \quad y(0)=3
$$

Solution: This problem is linear in y. Its normal form is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{2 x}{1+x^{2}} y=1
$$

An integrating factor is $e^{A(x)}$ where

$$
A^{\prime}(x)=-\frac{2 x}{1+x^{2}}
$$

Setting $A(x)=-\log \left(1+x^{2}\right)$, we find that $e^{A(x)}=\left(1+x^{2}\right)^{-1}$. The problem therefore has the intgrating factor form

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{1+x^{2}}\right)=\frac{1}{1+x^{2}} .
$$

Integrating both sides yields

$$
\frac{y}{1+x^{2}}=\tan ^{-1}(x)+c .
$$

Applying the initial condition gives

$$
\frac{3}{1+0^{2}}=\tan ^{-1}(0)+c
$$

which implies $c=3$. The solution is therefore

$$
y=\left(1+x^{2}\right)\left(\tan ^{-1}(x)+3\right) .
$$

