Quiz 3 Solutions, Math 246, Professor David Levermore Tuesday, 17 February 2009

(1) [2] Suppose you are using the Runge-Kutta method to numerically approximate the solution of an initial-value problem over the time interval [0,5]. By what factor would you expect the global error to decrease when the number of time steps that you take is increased from 500 to 2500 .
Solution: When you increase the number of time steps by a factor of 5 , the time step h is reduced by a factor of 5 . Because the Runge-Kutta method is fourth order, the global error will therefore decrease by a factor of $5^{4}=625$.
(2) [4] Consider the following MATLAB function M-file.
function $[\mathrm{t}, \mathrm{y}]=\operatorname{solveit}(\mathrm{ti}, \mathrm{yi}, \mathrm{tf}, \mathrm{n})$
$\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}$;
$\mathrm{t}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{y}=\operatorname{zeros}(\mathrm{n}+1,1) ;$
$\mathrm{t}(1)=\mathrm{ti}$;
$y(1)=y i ;$
for $\mathrm{j}=1$: n
$\mathrm{t}(\mathrm{j}+1)=\mathrm{t}(\mathrm{j})+\mathrm{h} ;$
$\mathrm{y}(\mathrm{j}+1)=\mathrm{y}(\mathrm{j})+\mathrm{h}^{*}\left(\mathrm{t}(\mathrm{j})^{\wedge} 3+\mathrm{y}(\mathrm{j})^{\wedge} 2\right) ;$
end
(a) What initial-value problem is being approximated numerically?
(b) What numerical method is being used?

Solution: The initial-value problem being approximated is

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=t^{3}+y^{2}, \quad y\left(t_{i}\right)=y_{i}
$$

The explicit Euler method is being used.
(3) [4] Consider the initial-value problem

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=z^{2}-z, \quad z(0)=2 .
$$

Use the Heun-midpoint method with $h=.1$ to approximate $z(.1)$. Leave your answer as an arithmetic expression.
Solution: Set $z_{0}=z(0)=2$. The Heun-midpoint method then yields

$$
\begin{aligned}
f_{0} & =z_{0}^{2}-z_{0}=2^{2}-2=4-2=2 \\
z_{\frac{1}{2}} & =z_{0}+\frac{h}{2} f_{0}=2+.05 \cdot 2=2.1, \\
f_{\frac{1}{2}} & =z_{\frac{1}{2}}^{2}-z_{\frac{1}{2}}=(2.1)^{2}-2.1, \\
z(.1) \approx z_{1} & =z_{0}+h f_{\frac{1}{2}}=2+.1\left((2.1)^{2}-2.1\right) .
\end{aligned}
$$

