Quiz 4 Solutions, Math 246, Professor David Levermore Tuesday, 3 March 2009

(1) [2] What is the interval of existence for the solution to the initial-value problem

$$
\frac{\mathrm{d}^{4} z}{\mathrm{~d} t^{4}}+e^{t} \frac{\mathrm{~d} z}{\mathrm{~d} t}+\sin (3 t) z=\tan (t), \quad z(2)=z^{\prime}(2)=z^{\prime \prime}(2)=z^{\prime \prime \prime}(2)=1
$$

Solution: The equation is already in linear normal form. The coefficients and forcing are defined and continuous everywhere except at $t=k \pi+\frac{\pi}{2}$ for some integer k. The initial time is $t=2$. The interval of existence is therefore $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.
(2) [3] Compute the Wronskian of the functions $Y_{1}(t)=\cos (3 t)$ and $Y_{2}(t)=\sin (3 t)$. (Evaluate the determinant and simplify.)

Solution: Because $Y_{1}^{\prime}(t)=-3 \sin (3 t)$ and $Y_{2}^{\prime}(t)=3 \cos (3 t)$, the Wronskian is

$$
\begin{aligned}
W\left[Y_{1}, Y_{2}\right](t) & =\operatorname{det}\left(\begin{array}{cc}
Y_{1}(t) & Y_{2}(t) \\
Y_{1}^{\prime}(t) & Y_{2}^{\prime}(t)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \cos (3 t) & 3 \cos (3 t)
\end{array}\right) \\
& =3 \cos (3 t)^{2}+3 \sin (3 t)^{2}=3 .
\end{aligned}
$$

(3) [3] Given that $\cos (2 t)$ and $\sin (2 t)$ are linearly independent solutions of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 y=0$, find the solution $Y(t)$ that satisfies the initial conditions $Y(0)=1, Y^{\prime}(0)=4$.

Solution: Let $Y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)$. Then $Y^{\prime}(t)=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)$. To satisfy the initial conditions one needs

$$
1=Y(0)=c_{1}, \quad 4=Y^{\prime}(0)=2 c_{2} .
$$

It follows that $c_{1}=1$ and $c_{2}=2$. The solution of the initial-value problem is therefore

$$
Y(t)=\cos (2 t)+2 \sin (2 t)
$$

(4) [2] Suppose that $Y_{1}(t)$ and $Y_{2}(t)$ are solutions of the differential equation

$$
y^{\prime \prime}+a(t) y=0
$$

where $a(t)$ is continuous over $(-5,5)$. Suppose you know that $W\left[Y_{1}, Y_{2}\right](0)=7$. What is $W\left[Y_{1}, Y_{2}\right](1)$?

Solution: Because the coefficient of y^{\prime} is zero, Abel's Theorem implies that $W\left[Y_{1}, Y_{2}\right](t)$ is constant over $(-5,5)$. Hence, $W\left[Y_{1}, Y_{2}\right](1)=W\left[Y_{1}, Y_{2}\right](0)=7$.

