Quiz 5 Solutions, Math 246, Professor David Levermore
 Tuesday, 10 March 2009

(1) [5] Give a general solution of the equation

$$
\frac{\mathrm{d}^{3} y}{\mathrm{~d} t^{3}}+6 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} t}=3 e^{t}
$$

Solution. The coefficients are constant. The characteristic polynomial is

$$
p(z)=z^{3}+6 z^{2}+5 z=z(z+1)(z+5),
$$

which has roots $z=0,-1,-5$. A general solution of the associated homogeneous equation is

$$
Y_{H}(t)=c_{1}+c_{2} e^{-t}+c_{3} e^{-5 t}
$$

The forcing has degree $d=0$ and characteristic $r+i s=1$, which has multiplicity $m=0$. Because $d+m=0$ we only need the KEY identity

$$
\mathrm{L}\left(e^{z t}\right)=\left(z^{3}+6 z^{2}+5 z\right) e^{z t}
$$

Evaluating this at $z=r+i s=1$ gives

$$
\mathrm{L}\left(e^{t}\right)=\left(1^{3}+6 \cdot 1^{2}+5 \cdot 1\right) e^{t}=12 e^{t} .
$$

Dividing this by 4 yields $\mathrm{L}\left(\frac{1}{4} e^{t}\right)=3 e^{t}$, which shows that $Y_{P}(t)=\frac{1}{4} e^{t}$ is a particular solution. (Alternatively, plug $Y_{P}(t)=A e^{t}$ into the equation and determine A.) A general solution of the equation therefore is

$$
y=Y_{H}(t)+Y_{P}(t)=c_{1}+c_{2} e^{-t}+c_{3} e^{-5 t}+\frac{1}{4} e^{t}
$$

(2) [5] Given that $\frac{1}{5} t$ is a particular solution of the differential equation, solve the initial value problem

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} w}{\mathrm{~d} t}+5 w=t, \quad w(0)=0, \quad w^{\prime}(0)=1
$$

Solution. The coefficients are constant. The characteristic polynomial is

$$
p(z)=z^{2}+4 z+5=(z+2)^{2}+1=(z+2)^{2}+1^{2}
$$

which has roots $z=-2+i,-1-i$. A general solution of the associated homogeneous equation is

$$
W_{H}(t)=c_{1} e^{-2 t} \cos (t)+c_{2} e^{-2 t} \sin (t)
$$

Because a particular solution is $W_{P}(t)=\frac{1}{5} t$, a general solution of the equation is

$$
w=c_{1} e^{-2 t} \cos (t)+c_{2} e^{-2 t} \sin (t)+\frac{1}{5} t .
$$

The initial condition $w(0)=0$ implies that

$$
0=w(0)=c_{1} e^{0} \cos (0)+c_{2} e^{0} \sin (0)+\frac{1}{5} 0=c_{1} .
$$

Hence, $c_{1}=0$. Then because

$$
w^{\prime}=c_{2} e^{-2 t} \cos (t)-2 c_{2} e^{-2 t} \sin (t)+\frac{1}{5}
$$

the initial condition $w^{\prime}(0)=1$ implies that

$$
1=c_{2} e^{0} \cos (0)-2 c_{2} e^{0} \sin (0)+\frac{1}{5}=c_{2}+\frac{1}{5} .
$$

Hence, $c_{2}=\frac{4}{5}$ and the solution is $w=\frac{4}{5} e^{-2 t} \sin (t)+\frac{1}{5} t$.

