Quiz 7 Solutions, Math 246, Professor David Levermore
Tuesday, 31 March 2009
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Short Table: L[sin(bt)](s) = T for s >0, Lle™)(s) = 4 for s >a.
(1) [3] Use the definition of the Laplace transform to compute L[f](s) for f(t) = u(t—2),
where u is the unit step function.
Solution: By the definitions of the Laplace transform and the unit step function
T T
L[f](s) = lim e ' f(t)dt = lim et dt.
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The above limit diverges for s < 0 because then e™%* > 1. For s > 0
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LIf1(s) = lim - = for s > 0.
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(2) [4] Find the Laplace transform Y (s) of the solution y(t) of the initial-value problem
y" — 4y = sin(t), y(0)=0, %(0)=3. DO NOT solve for y(t), just Y(s)!

Solution: The Laplace transform of the initial-value problem and item 1 in the table
at the top of the page with b = 1 gives

£ly')(s) ~ 4L[5)(5) = LB (D)) = 53 =
where
Llyl(s) =Y (s),
Lly'l(s) = sY(s) —y(0) = sY(s),
L[y"](s) = s°Y (s) = sy(0) — y'(0) = s*Y (s) — 3
Hence,
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(3) [3] Find the inverse Laplace transform y(t) of the function Y'(s) = %
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Solution: A partial fractions identity gives
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Item 2 in the table at the top of the page with a = 3 and with a = —2 then gives
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