Quiz 10 Solutions, Math 246, Professor David Levermore Tuesday, 28 April 2009

(1) $[3] \mathbf{A}=\left(\begin{array}{ll}3 & 5 \\ 3 & 1\end{array}\right)$ has eigenvalues -2 and 6 . Find an eigenvector for each eigenvalue. Solution: One has $\mathbf{A}+2 \mathbf{I}=\left(\begin{array}{ll}5 & 5 \\ 3 & 3\end{array}\right)$ and $\mathbf{A}-6 \mathbf{I}=\left(\begin{array}{cc}-3 & 5 \\ 3 & -5\end{array}\right)$.
The eigenvectors \mathbf{v}_{1} associated with the eigenvalue -2 satisfy $(\mathbf{A}+2 \mathbf{I}) \mathbf{v}_{1}=0$. You can either solve this system or simply read-off from a nonzero column of $\mathbf{A}-6 \mathbf{I}$ that these have the form

$$
\mathbf{v}_{1}=\alpha_{1}\binom{-1}{1} \quad \text { for some } \alpha_{1} \neq 0
$$

The eigenvectors \mathbf{v}_{2} associated with the eigenvalue 6 satisfy $(\mathbf{A}-6 \mathbf{I}) \mathbf{v}_{2}=0$. You can either solve this system or simply read-off from a nonzero column of $\mathbf{A}+2 \mathbf{I}$ that these have the form

$$
\mathbf{v}_{2}=\alpha_{2}\binom{5}{3} \quad \text { for some } \alpha_{2} \neq 0
$$

(2) $[3]$ A real 2×2 matrix \mathbf{A} has the eigenpair $\left(-1+i 2,\binom{1}{-i}\right)$. Diagonalize \mathbf{A}.

Solution: Because A is real, a second eigenpair will be the complex conjugate of the given eigenpair. If you use the eigenpairs

$$
\left(-1+i 2,\binom{1}{-i}\right), \quad\left(-1-i 2,\binom{1}{i}\right)
$$

then set

$$
\mathbf{V}=\left(\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
-1+i 2 & 0 \\
0 & -1-i 2
\end{array}\right)
$$

Because $\operatorname{det}(\mathbf{V})=1 \cdot i-(-i) \cdot 1=2 i$, you obtain the diagonalization

$$
\mathbf{A}=\mathbf{V D V}^{-1}=\left(\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right)\left(\begin{array}{cc}
-1+i 2 & 0 \\
0 & -1-i 2
\end{array}\right) \frac{1}{2 i}\left(\begin{array}{cc}
i & -1 \\
i & 1
\end{array}\right) .
$$

(3) [4] A real 2×2 matrix \mathbf{A} has the eigenpairs $\left(-1,\binom{3}{1}\right)$ and $\left(-2,\binom{1}{3}\right)$. Sketch a phase-plane portrait for the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A x}$. Indicate typical trajectories.
Solution: Because the eigenvalues of \mathbf{A} are simple and negative, the phase-plane portrait is a nodal sink. (The origin is therefore attracting.)
The trajectories that lie on the lines $c_{1}\binom{3}{1}$ and $c_{2}\binom{1}{3}$ move towards the origin. All other trajectories will move towards the origin along curves that become tangent to the line $c_{1}\binom{3}{1}$ as $t \rightarrow \infty$, and become more parallel to the line $c_{2}\binom{1}{3}$ as $t \rightarrow-\infty$.

