Quiz 11 Solutions, Math 246, Professor David Levermore
 Tuesday, 12 May 2009

(1) [5] Consider the first-order planar system

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(1-y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=y(x-1)
$$

Its stationary points are $(0,0)$ and $(1,1)$. The coefficient matrix \mathbf{A} of its linearization at these points is respectively

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathbf{A}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The first of these matrices has the real eigenpairs

$$
\left(1,\binom{1}{0}\right), \quad\left(-1,\binom{0}{1}\right)
$$

while the second has the conjugate pair of eigenvalues $\pm i$. Sketch a plausible global phase-plane portrait of this system. Carefully mark all sketched orbits with arrows.

Solution: The stationary point $(0,0)$ is a saddle, and is therefore unstable, because the eigenvalues of its \mathbf{A} are real, nonzero, and have opposite sign. The x-axis $(y=0)$ and y-axis $(x=0)$ are invariant. Orbits move away from $(0,0)$ along the x-axis while orbits move towards $(0,0)$ along the y-axis.
The stationary point $(1,1)$ is a counterclockwise center, and is therefore stable, because $a_{21}=1>0$, and because the eigenvalues of its \mathbf{A} are $\pm i$ while the system is conservative in the first quadrant - a fact seen because its integrals satisfy

$$
\frac{x-1}{x} \mathrm{~d} x-\frac{1-y}{y} \mathrm{~d} y=0
$$

which has no singularities when $x \neq 0$ and $y \neq 0$. A sketch was given in class.
(2) [5] Consider the first-order planar system

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=5 x+x^{2}+4 y
$$

Its stationary points are $(0,0)$ and $(-5,0)$. Classify the type and stability of each of these stationary points. (You do not have to sketch anything.)
Solution: The matrix of partial derivatives is $\left(\begin{array}{cc}\partial_{x} f & \partial_{y} f \\ \partial_{x} g & \partial_{y} g\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ 5+2 x & 4\end{array}\right)$.

- At $(0,0)$ the coefficient matrix of its linearization is $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 5 & 4\end{array}\right)$, which has the characteristic polynomial $p(z)=z^{2}-4 z-5=(z+1)(z-5)$. The eigenvalues of \mathbf{A} are -1 and 5 . Because these are real, nonzero, and have opposite sign, the stationary point $(0,0)$ is a saddle and is therefore unstable.
- At $(-5,0)$ the coefficient matrix of its linearization is $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -5 & 4\end{array}\right)$, which has the characteristic polynomial $p(z)=z^{2}-4 z+5=(z-2)^{2}+1$. The eigenvalues of \mathbf{A} are the conjugate pair $2 \pm i$. Because these have postive real part, and because $a_{21}=-5<0$, the stationary point $(-5,0)$ is a clockwise spiral source and is therefore repelling.

