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Solution. The good way to do this is to first simplify h(t) as
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Then the exponential rule gives
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Alternative Solution. Another way to do this is to simplify h(t) as
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The the product and exponential rules give
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Another Alternative Solution. The quotient and exponential rules give
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(2) [3] Solve
(
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= 4 for x.

Solution. Because
(
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=
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(

22
)

x−2
= 4x−2 ,

you see that 4x−2 = 4. Therefore x − 2 = 1, whereby x = 3.

Alternative Solution. Because 4 = 22, the equation is equivalent to 2x+1
· 2−3 = 2.

But 2x+1
· 2−3 = 2x+1−3 = 2x−2, so that x − 2 = 1, whereby x = 3.

(3) [4] Find the point x where the graph of y = (1 + x2)ex has a horizontal tangent line.

Solution. The tangent line will be horizontal where the derivative is zero. By the
product and exponential rules

dy

dx
= 2xex + (1 + x2)ex = (x2 + 2x + 1)ex = (x + 1)2ex .

Because ex > 0 for every x, this derivative is zero only when (x + 1)2 = 0, which
happens at the point x = −1.


