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(1) [5] Evaluate the definite integral
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Solution. Because −e
−x is an antiderivative of e

−x and 3

4
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3 , by the Fundamental Theorem of Calculus
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(2) [5] Compute the area of the region bounded by the curves y = x
2 and y = x + 2.

Solution. The curves intersect when x
2 = x + 2. By solving for x you find

0 = x
2
− x − 2 = (x + 1)(x − 2) ,

which means that the curves intersect when x = −1 and x = 2. By checking x = 0
you see that the curve y = x + 2 lies above the curve y = x

2. The area of the region
bounded by the curves y = x

2 and y = x + 2 is given by
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