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This is a review of material pertaining to local approximations and their applications

that are covered sometime during a year-long calculus sequence. It covers tangent line

approximations, Taylor approximations and expansions, how to quickly generate Taylor

expansions, limits of indeterminant forms, and l’Hopital’s rules.
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1. TANGENT LINE APPROXIMATIONS

1.1: Tangent Line Approximations. If f is differentiable at a point c then recall that

the tangent line to the curve y = f(x) at c is given by

y = f(c) + f ′(c)(x − c) . (1.1)

It is the unique line through the point (c, f(c)) with slope f ′(c).

The idea of the tangent line approximation is that this line will be a good approxima-

tion to the curve y = f(x) so long as x is close to c. Viewed graphically, this idea should

seem obvious to you. Another way to understand the tangent line approximation starts

with the definition of the derivative at c written in the form

f ′(c) = lim
x→c

f(x) − f(c)

x − c
. (1.2)

This can be re-expressed as

lim
x→c

f(x) − f(c) − f ′(c)(x − c)

x − c
= 0 . (1.3)

Because f(x)−f(c)−f ′(c)(x−c) is the difference between the value of f(x) and the value of

its tangent line approximation at c, this shows that error of the tangent line approximation

goes to zero faster than x − c as x approaches c.

The sign of the error made by the tangent line approximation can be determined by

analyzing the concavity of f near the point c. Let f be differentiable over an interval I

that contains c. If f is concave up over I then

f(x) ≥ f(c) + f ′(c)(x − c) for every x in I . (1.4)

Said another way, if f is concave up over I, the tangent line lies below the graph of f over

I. On the other hand, if f is concave down over I then

f(x) ≤ f(c) + f ′(c)(x − c) for every x in I . (1.5)

Said another way, if f is concave down over I, the tangent line lies above the graph of f

over I.
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2. TAYLOR APPROXIMATIONS AND EXPANSIONS

2.1: Taylor Polynomial Approximations. Taylor approximations are extensions of

the tangent line approximation. Recall that if a function f is differentiable at c then the

tangent line (1.1) to the curve y = f(x) at c is just the unique line through the point

(c, f(c)) with slope f ′(c). In this spirit, if f is twice differentiable at c then the curve

y = f(c) + f ′(c)(x − c) +
1

2
f ′′(c)(x − c)2 , (2.1)

goes through the point (c, f(c)) and matches the first two derivatives of f at c. It is a

parabola whenever f ′′(c) 6= 0. In the same spirit, if f is thrice differentiable at c then the

curve

y = f(c) + f ′(c)(x − c) +
1

2
f ′′(c)(x − c)2 +

1

6
f ′′′(c)(x − c)3 , (2.2)

goes through the point (c, f(c)) and matches the first three derivatives of f at c. It is cubic

whenever f ′′′(c) 6= 0.

In general, if f is n times differentiable at a point c then the nth order Taylor approx-

imation to f(x) at c is given by the polynomial curve

y = f(c) + f ′(c)(x − c) +
1

2
f ′′(c)(x − c)2 + · · · + 1

n!
f (n)(c)(x − c)n . (2.3)

The right-hand side is a polynomial in x of degree at most n. It is expressed in powers

of (x − c). Its degree will be n whenever f (n)(c) 6= 0, otherwise it will be less than n. It

is the unique polynomial that matches f and its first n derivatives evaluated at c. The

idea of the Taylor approximation is that if you match more derivatives at c then the

approximation will be better near c. The summation notation may be used to express

(2.3) more compactly as

y =
n

∑

k=0

1

k!
f (k)(c)(x − c)k . (2.4)

If you are not familiar with this notation, do not worry, because you can get along fine

without it for now. If however you plan a technical career, I suggest that you take the

time to become familiar with it because you will only see more of it.

An important special case is nth order Taylor approximation to f(x) at 0. Then (2.3)

takes the cleaner looking form

y = f(0) + f ′(0) x +
1

2
f ′′(0) x2 + · · · + 1

n!
f (n)(0) xn , (2.5)



4

which in the summation notation looks like

y =

n
∑

k=0

1

k!
f (k)(0) xk . (2.6)

Given a function f that is n times differentiable at c, one computes the nth order

Taylor approximation at c in three steps:

(1) compute a list of the first n derivatives of f

f(x) , f ′(x) , f ′′(x) , · · · , f (n)(x) ; (2.7)

(2) evaluate all these functions at c to get the list of n + 1 numbers

f(c) , f ′(c) , f ′′(c) , · · · , f (n)(c) ; (2.8)

(3) plug these numbers into the right-hand side of (2.3) to obtain the coefficients of the

powers of (x − c).

These three steps should always yield a polynomial expressed in powers of (x − c) that is

of at most degree n. It will have at most n + 1 terms in it, but will have less when some

of the numbers in (2.8) are zero.

Example: To compute the second order Taylor approximation of f(x) = tan(x) at π
4
:

you first compute the derivatives

f(x) = tan(x) , f ′(x) = sec2(x) , f ′′(x) = 2 tan(x) sec2(x) ;

which you evaluate as

f(π
4 ) = 1 , f ′(π

4 ) = 2 , f ′′(π
4 ) = 4 ;

whereby from (2.3) you obtain the parabola

y = 1 + 2(x − π
4
) + 2(x − π

4
)2 .

Example: To compute the third order Taylor approximation of f(x) = ex at 0: you first

compute the derivatives

f(x) = ex , f ′(x) = ex , f ′′(x) = ex , f ′′′(x) = ex ;

which you evaluate as

f(0) = 1 , f ′(0) = 1 , f ′′(0) = 1 , f ′′′(0) = 1 ;

whereby from (2.5) you obtain the cubic

y = 1 + x +
1

2
x2 +

1

6
x3 .
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Example: To compute the seventh order Taylor approximation of f(x) = ln(x) at 1, we

would first compute the derivatives of ln through seventh order as

ln(x) ,
1

x
,

−1

x2
,

2

x3
,

−6

x4
,

24

x5
,

−120

x6
,

720

x7
.

These functions are then be evaluated at 1 to obtain the numbers

0 , 1 , −1 , 2 , −6 , 24 , −120 , 720 .

Finally, these numbers are plugged into (2.3) to obtain

y = (x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4

+
1

5
(x − 1)5 − 1

6
(x − 1)6 +

1

7
(x − 1)7 .

(2.9)

Remark: Notice that the values of a function f and its first n derivatives evaluated at c

can read off from its nth order Taylor approximation at c. That is, suppose you are told

that f has the nth order Taylor approximation

y = a0 + a1(x − c) + a2(x − c)2 + · · ·+ an(x − c)n , (2.10)

where a0, a1, · · · , an are given numbers. Upon comparing this with (2.3) you see that

f (k)(c) = k! ak for k = 0, 1, · · · , n .

Moreover, all Taylor approximations at c of lower order can be read off from the nth order

Taylor approximation of f at c. That is, suppose you are told that f has the nth order

Taylor approximation (2.10). Then you know that the second and third order Taylor

approximations of f at c are simply

y = a0 + a1(x − c) + a2(x − c)2 ,

y = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 .

Example: If you know that the seventh order Taylor approximation of ln at 1 is given by

(2.9) then the first, third, and fifth order Taylor approximations at 1 are:

y = (x − 1) ,

y = (x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 ,

y = (x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4 +

1

5
(x − 1)5 .

Can you read off the lower order Taylor approximations of even order?
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2.2: Formal Taylor Series. Because the nth order Taylor approximation of f at c

contains all the terms of the Taylor approximations of lower order, if f is infinitely differ-

entiable at c then you may encode all the Taylor approximations of finite order at c as the

formal infinite series

Tcf(x) = f(c) + f ′(c)(x − c) +
1

2
f ′′(c)(x − c)2 + · · ·+ 1

n!
f (n)(c)(x − c)n + · · · . (2.11)

which in summation notation looks like

Tcf(x) =
∞
∑

k=0

1

k!
f (k)(c)(x − c)k . (2.12)

This is called the formal Taylor series (or Taylor expansion) of f at c. The formal Taylor

series of f at 0 is simply

Tf(x) = f(0) + f ′(0) x +
1

2
f ′′(0) x2 + · · ·+ 1

n!
f (n)(0) xn + · · · . (2.13)

which in summation notation looks like

Tf(x) =

∞
∑

k=0

1

k!
f (k)(0) xk . (2.14)

It should be emphasized that we are not claiming any of the above sums can be assigned

a value at a point x where the sum has an infinite number of nonzero terms. Nor are we

claiming that when such a value can be assigned at such an x, the value will be equal

to f(x). Indeed, these things are not true for most infinitely differentiable functions. In

Calculus II you will in see however that for many of the basic elementary functions these

things are true at least at some such x. Let us put these questions aside. For now consider

formal Taylor series to be a bookkeeping device by which one encodes all the Taylor

approximations of finite order at c for any given function f that is infinitely differentiable

at c.

In order to compute a formal Taylor series directly from f , you must notice a pattern

in the expressions for f (n), so that you can write down the general expression of the nth

derivative of f . This may not be so easy to do, but once it is done, you just evaluate this

general expression at c and plug the result into either (2.11) or (2.12). Fortunately, this is

easy to do for many basic elementary functions.

Example: To compute Tex, we set f(x) = ex and notice that

f (n)(x) = ex for every n .
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Hence, the evaluation of these functions at 0 leads to

f (n)(0) = 1 for every n .

When these numbers are plugged into (2.13) you find

Tex = 1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 + · · · , (2.15)

which agrees with (2.10). When (2.15) is expressed in summation notation (2.14) you find

Tex =

∞
∑

k=0

1

k!
xk . (2.16)

This VERY IMPORTANT expansion should be memorized.

Example: To compute T sin(x), we notice that successive derivatives of sin form the

repeating pattern

sin(x) , cos(x) , − sin(x) , − cos(x) , · · · .

The corresponding repeating pattern of numbers is

0 , 1 , 0 , −1 , · · · .

Hence sin(n)(0) will vanish for even values of n and alternate between 1 and −1 for odd

values of n. When these numbers are plugged into (2.13) you find

T sin(x) = x − 1

6
x3 +

1

120
x5 − 1

5040
x7 + · · · . (2.17)

Notice the striking relation between this expansion and that for exp(x); the terms here are

just the odd terms of (2.15) but taken with an alternating sign. This can be expressed in

summation notation (2.14) as

T sin(x) =
∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1 . (2.18)

Do you see that only odd powers of x appear in this sum and that the sign of the terms

alternates? Write out the first four terms of this sum (those corresponding to k = 0, 1, 2, 3)

to see that they agree with those shown in (2.17).



8

Example: To compute T cosh(x), we notice that successive derivatives of cosh form the

repeating pattern

cosh(x) , sinh(x) , · · · .

The corresponding repeating pattern of numbers is

1 , 0 , · · · .

Hence cosh(n)(0) will take the value 1 for even values of n and vanish for odd values of n.

When these numbers are plugged into (2.13) you find

T cosh(x) = 1 +
1

2
x2 +

1

24
x4 +

1

720
x6 + · · · . (2.19)

Once again notice the striking relation between this expansion and that for exp(x); the

terms here are just the even terms of (2.15). This can be expressed in summation notation

(2.14) as

T cosh(x) =

∞
∑

k=0

1

(2k)!
x2k . (2.20)

Write out the first four terms of this sum (those corresponding to k = 0, 1, 2, 3) to see that

they agree with those shown in (2.19).

Example: To compute T1 ln(x), we notice that for n ≥ 1 the nth derivative of ln(x) has

the form

(−1)n−1 (n − 1)!

xn
.

The corresponding nth number obtained by evaluating this at 1 is

(−1)n−1(n − 1)! .

Finally, these numbers are plugged into (2.11) to obtain

T1 ln(x) = (x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4

+
1

5
(x − 1)5 − 1

6
(x − 1)6 +

1

7
(x − 1)7 − · · · .

(2.21)

This can be expressed in summation notation (2.12) as

T1 ln(x) =
∞
∑

k=1

(−1)k−1

k
(x − 1)k . (2.22)
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Example: To compute Tcx
p for some c > 0, we notice that for n ≥ 1 the nth derivative

of xp has the form

p(p − 1) · · · (p − n + 1)xp−n .

The corresponding nth number obtained by evaluating this at c is

p(p − 1) · · · (p − n + 1)cp−n .

Finally, these numbers are plugged into (2.11) to obtain

Tcx
p = cp + pcp−1(x − c) +

p(p − 1)

2
cp−2(x − c)2 +

p(p − 1)(p − 2)

6
cp−3(x − c)3

− p(p − 1)(p − 2)(p − 3)

24
cp−4(x − c)4 + · · · .

(2.23)

This can be expressed in summation notation (2.12) as

Tcx
p = cp +

∞
∑

k=1

p(p − 1) · · · (p − k + 1)

k!
cp−k(x − c)k . (2.24)

Remark: Notice that when p is a positive integer the sum (2.24) will truncate after p

terms. Moreover, observe that in that case

p(p − 1) · · · (p − k + 1)

k!
=

p!

k!(p − k)!
.

You should recognize this as a coefficient of the binomial expansion. Indeed, when p is

a positive integer the Taylor expansion (2.24) reduces to your old friend the binomial

expansion:

(c + z)p = cp + pcp−1z +
p(p − 1)

2
cp−2z2 + · · ·+ pczp−1 + zp .

For example, if one sets z = x− c, so that x = z + c, then for p = 4 the binomial expansion

yields
x4 = (c + z)4 = c4 + 4c3z + 6c2x2 + 4cz3 + z4

= c4 + 4c3(x − c) + 6c2(x − c)2 + 4c(x − c)3 + (x − c)4 .

Because the sum on the right-hand side above agrees with that for Tcx
4 given by (2.24),

we see that the Taylor expansion recovers x4 exactly. The story is the same when p is any

positive integer.
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3. GENERATING TAYLOR APPROXIMATIONS

3.1: Some Special Taylor Expansions. Many Taylor approximations can be simply

built up from the following seven basic Taylor expansions at 0, which you should know:

Tex = 1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 + · · ·+ 1

n!
xn + · · · ,

T sin(x) = x − 1

6
x3 +

1

120
x5 − · · · + (−1)n

(2n + 1)!
x2n+1 + · · · ,

T cos(x) = 1 − 1

2
x2 +

1

24
x4 − · · · + (−1)n

(2n)!
x2n + · · · ,

T sinh(x) = x +
1

6
x3 +

1

120
x5 + · · · + 1

(2n + 1)!
x2n+1 + · · · ,

T cosh(x) = 1 +
1

2
x2 +

1

24
x4 + · · · + 1

(2n)!
x2n + · · · ,

T ln(1 + x) = x − 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 − · · ·+ (−1)n−1

n
xn + · · · ,

T (1 + x)p = 1 + px +
p(p − 1)

2
x2 +

p(p − 1)(p − 2)

6
x3 + · · ·

· · ·+ p(p − 1) · · · (p − n + 1)

n!
xn + · · · .

(3.1)

When expressed in summation notation these become

Tex =
∞
∑

k=0

1

k!
xk ,

T sin(x) =
∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1 ,

T cos(x) =

∞
∑

k=0

(−1)k

(2k)!
x2k ,

T sinh(x) =

∞
∑

k=0

1

(2k + 1)!
x2k+1 ,

T cosh(x) =

∞
∑

k=0

1

(2k)!
x2k ,

T ln(1 + x) =
∞
∑

k=1

(−1)k−1

k
xk ,

T (1 + x)p = 1 +
∞
∑

k=1

p(p − 1) · · · (p − k + 1)

k!
xk .

(3.2)
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Each of these very important expansions should be memorized. This is simplified somewhat

by the fact that those for sin(x), cos(x), sinh(x) and cosh(x) all derive from the one for

ex. Specifically, the ones for sinh(x) and cosh(x) are comprised of the odd and even terms

respectively of the one for ex, while the ones for sin(x) and cos(x) are identical to those for

sinh(x) and cosh(x) respectively except for the introduction of an alternating sign. Given

these simple relations, one is left with memorizing only three expansions — the ones for

ex, ln(1 + x) and (1 + x)p. At least you should be able to crank out the first several terms

without too much trouble.

The idea of this section is simple — just as the derivative of any elementary function

can be built up from combinations of a few basic ones, the general Taylor expansion of

any elementary function can be built up from combinations of those given in (3.1) or (3.2).

Mastering these techniques makes the job of computing Taylor expansions far easier than

generating them each time from (2.3) or (2.4).

3.2: Using Linearity. Because taking derivatives is a linear operation, given any two

functions f and g that are infinitely differentiable at c and any constant a, the general

Taylor expansion of af and f + g at c are easily computed from those of f and g because

Tc[af(x)] = a Tcf(x) , Tc[f(x) + g(x)] = Tcf(x) + Tcg(x) . (3.3)

When we add Taylor approximations of the same order we just add the coefficients of like

powers of (x − c)k. When we add Taylor approximations of the different order, we first

reduce the one of higher order to the lower order before adding the coefficients of like

powers of (x − c)k.

Example: To compute Tf(x) for f(x) = ex + sin(x) one simply combines the first and

thirst expansions in (3.1) obtain

Tf(x) = T exp(x) + T cos(x)

=

(

1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 + · · ·

)

+

(

1 − 1

2
x2 +

1

24
x4 + · · ·

)

= 2 + x +
1

6
x3 +

1

12
x4 +

1

120
x5 + · · · .

Notice that the x2 terms have dropped out. What will be the next power of x whose terms

will drop out?
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Example: In a similar spirit, to compute Tg(x) for g(x) = ex − cos(x), one obtains

Tg(x) = T exp(x) − T cos(x)

=

(

1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 + · · ·

)

−
(

1 − 1

2
x2 +

1

24
x4 + · · ·

)

= x + x2 +
1

6
x3 +

1

120
x5 + · · · .

Notice that now the x0 and x4 terms have dropped out. What will be the next power of

x whose terms will drop out?

3.3: Using Multiplication by and Substitution of Powers. Suppose you know the

Taylor expansion of a function f at c:

Tcf(x) = f(c) + f ′(c) (x − c) +
1

2
f ′′(c) (x − c)2 + · · · + 1

n!
f (n)(c) (x − c)n + · · · . (3.4)

Suppose the function g is given in terms of f by

g(x) = (x − c)mf(x) ,

for some positive integer m. In other words, by the multiplication of f by (x− c)m. Then

you can easily compute the Taylor expansion of g at c by simply multiplying each term in

(3.4) by a(x − c)m. Thus, you find

Tcg(x) = f(c) (x − c)m + f ′(c) (x − c)m+1 +
1

2
f ′′(c) (x − c)m+2 + · · ·

· · ·+ 1

n!
f (n)(c) (x − c)m+n + · · · ,

(3.5)

which in the summation notation looks like

Tcg(x) =
∞
∑

k=0

1

k!
f (k)(c) (x − c)m+k . (3.6)

Example: To expand x3 sinh(x) at 0 one reads off from (3.1) that

T [x3 sinh(x)] = x4 +
1

6
x6 +

1

120
x8 + · · · + 1

(2n + 1)!
x2n+4 + · · · .
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When this is expressed in summation notation of (3.2) you find

T [x3 sinh(x)] =

∞
∑

k=0

1

(2k + 1)!
x2k+4 .

Suppose you know the Taylor expansion of a function f at 0:

Tf(z) = f(0) + f ′(0) z +
1

2
f ′′(0) z2 + · · ·+ 1

n!
f (n)(0) zn + · · · . (3.7)

For example, f could be one of the elementary functions whose Taylor expansion is given

in (3.1). Suppose the function g is given in terms of f by

g(x) = f
(

a(x − c)m
)

,

for some constants a and c, and some positive integer m. In other words, by the substitution

of z with a(x − c)m in f(z). Then you can easily compute the Taylor expansion of g at c

by simply replacing z by a(x − c)m everywhere in (3.7). Thus, you find

Tcg(x) = f(0) + f ′(0) a (x− c)m +
1

2
f ′′(0) a2(x − c)2m + · · ·

· · · + 1

n!
f (n)(0) an(x − c)nm + · · · ,

(3.8)

which in the summation notation looks like

Tcg(x) =

∞
∑

k=0

1

k!
f (k)(0) ak(x − c)km . (3.9)

Example: To expand sin(x3) at 0 one reads off from (3.1) that

T sin(x3) = x3 − 1

6
x9 +

1

120
x15 − · · ·+ (−1)n

(2n + 1)!
x6n+3 + · · · .

When this is expressed in summation notation of (3.2) you find

T sin(x3) =
∞
∑

k=0

(−1)k

(2k + 1)!
x6k+3 .
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Example: To compute T [x3 cosh(x2)] one reads off from (3.1) that

x3 cosh(x2) = x3

(

1 +
1

2
x4 +

1

24
x8 +

1

720
x12 + · · ·

)

= x3 +
1

2
x7 +

1

24
x11 +

1

720
x15 + · · · .

Example: To compute Te−x one reads off from (3.1) that

Te−x = 1 − x +
1

2
x2 − 1

6
x3 +

1

24
x4 − 1

120
x5 +

1

720
x6 − 1

5040
x7 + · · · .

When this is expressed in summation notation you find

Te−x =

∞
∑

k=0

(−1)k

k!
xk .

Remark: Recall that the definitions of sinh and cosh are

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2
.

The Taylor expansions for sinh and cosh given in (3.1) can then be seen to be the appro-

priate linear combinations of those of ex and e−x.

Remark: Using these techniques you can show that even functions have Taylor expansions

with only even powers of x while odd functions have expansions with only odd powers.

3.4: Using Identities. Notice that all the Taylor expansions of the elementary functions

given in (3.1) and (3.2) are based at 0. This is because one may use identities to reduce the

calculation of the Taylor expansion at any point c to that of expansions at 0. For example,

if we let z = x − c, so that x = c + z, then one has the addition formulas

ex = ec+z = ecez ,

sin(x) = sin(c + z) = cos(c) sin(z) + sin(c) cos(z) ,

cos(x) = cos(c + z) = cos(c) cos(z) − sin(c) sin(z) ,

sinh(x) = sinh(c + z) = cosh(c) sinh(z) + sinh(c) cosh(z) ,

cosh(x) = cosh(c + z) = cosh(c) cosh(z) + sinh(c) sinh(z) ,

(3.10)
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Hence, by linearity (3.3) and substitution (3.8) the calculation is reduced to knowing five

of the expansions listed in (3.2). For example, from the first and third addition formulas

in (3.8) we see that

Tce
x =

∞
∑

k=0

ec

k!
(x − c)k ,

Tc cos(x) =
∞
∑

k=0

(−1)k cos(c)

(2k)!
(x − c)2k −

∞
∑

k=0

(−1)k sin(c)

(2k + 1)!
(x − c)2k+1

=
∞
∑

k=0

[

(−1)k cos(c)

(2k)!
(x − c)2k − (−1)k sin(c)

(2k + 1)!
(x − c)2k+1

]

.

Example: To find Tπ
6

cos(x) one has

Tπ
6

cos(x) =

√
3

2
− 1

2
(x − π

6
) −

√
3

4
(x − π

6
)2 +

1

12
(x − π

6
)3 + · · · .

Similarly, for c > 0 we have the identities

ln(x) = ln(c + z) = ln(c) + ln

(

1 +
z

c

)

,

xp = (c + z)p = cp

(

1 +
z

c

)p

.

(3.11)

Hence, the calculation is reduced to knowing remaining two expansions listed in (3.2):

Tc ln(x) = ln(c) +
∞
∑

k=1

(−1)k−1

k

(

x − c

c

)k

,

Tcx
p = cp +

n
∑

k=1

p(p − 1) · · · (p − k + 1)

k!
cp

(

x − c

c

)k

.

Notice that this is a far quicker way to derive (2.22) and (2.24) than using (2.4).

Example: To find T3 ln(x) one has

T3 ln(x) = ln(3) +
1

3
(x − 3) − 1

18
(x − 3)2 +

1

81
(x − 3)3 − 1

324
(x − 3)4 + · · · .
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4. LIMITS WITH INDETERMINANT FORMS

4.1: Taylor Approximations Applied to Limits. Taylor approximations can help you

evaluate limits of the form

lim
x→c

f(x)

g(x)
,

in cases where f(c) = g(c) = 0. Such a limit is said to have the indeterminant form 0/0.

The key idea is that the behavior of a function f near a point c is governed by the

first nonzero term in its Taylor expansion at c in the sense that their ratio approaches one.

More precisely, if the first nonzero term in the Taylor expansion occurs at order m then

one can show that

lim
x→c

f(x)
1

m! f (m)(c) (x − c)m
= 1 .

We then say that the leading behavior of f near c is given by

f(x) ∼ 1

m!
f (m)(c)(x − c)m .

If f and g have Taylor expansions at c whose first nonzero terms occur at orders m and n

respectively, then their leading behaviors near c are given by

f(x) ∼ 1

m!
f (m)(c)(x − c)m , g(x) ∼ 1

n!
g(n)(c)(x − c)n ,

where both f (m)(c) and g(n)(c) are nonzero. The leading behavior of f/g is then given by

f(x)

g(x)
∼ n!

m!

f (m)(c)

g(n)(c)
(x − c)m−n . (4.1)

We can read off from this that

lim
x→c

f(x)

g(x)
=















0 if m > n ,

f (n)(c)

g(n)(c)
if m = n ,

diverges if m < n .

(4.2)

In fact, more refined information can be read off from (4.1) about the nature of the diver-

gence when m < n. In that case if we let ± correspond to the sign of f (m)(c)/g(n)(c), then

when n − m is even

lim
x→c

f(x)

g(x)
diverges to ±∞ , (4.3)



17

while when n − m is odd

lim
x→c+

f(x)

g(x)
diverges to ±∞ , lim

x→c−

f(x)

g(x)
diverges to ∓∞ . (4.4)

The above analysis was devised by l’Hopital to evaluate limits that have the indeterminant

form 0/0.

In order to apply (4.2), you only need to find the first n at which at least one of either

f (n)(c) or g(n)(c) does not vanish. Then

lim
x→c

f(x)

g(x)
=







f (n)(c)

g(n)(c)
if g(n)(c) 6= 0 ,

diverges if g(n)(c) = 0 .

(4.5)

Example: To evaluate

lim
h→0

eh − 1 − h

sin2(h)
,

use the Taylor expansions

Teh = 1 + h +
1

2
h2 + · · · , T sin(h) = h − 1

6
h3 + · · · ,

to obtain that the leading behaviors of the numerator and denominator are given by

eh − 1 − h ∼ 1

2
h2 , sin2(h) ∼ h2 .

Hence,

lim
h→0

eh − 1 − h

sin2(h)
= lim

h→0

1
2h2

h2
=

1

2
,

where we have divided the numerator and denominator by h2 before taking the limit in

the last step.

Example: To evaluate

lim
x→0

sin(x) − x

sin(x3)
,

use the Taylor expansions

T sin(x) = x − 1

6
x3 + · · · , T sin(x3) = x3 + · · · ,
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to obtain that the leading behaviors of the numerator and denominator are given by

sin(x) − x ∼ −1

6
x3 , sin(x3) ∼ x3 .

Hence,

lim
x→0

sin(x) − x

sin3(x)
= lim

x→0

−1
6
x3

x3
= −1

6
,

where we have divided the numerator and denominator by x3 before taking the limit in

the last step.

4.2: Generalized l’Hopital Rule. Derivatives can also help you evaluate limits of the

indeterminant form 0/0 through the following.

Generalized l’Hopital Rule: Let f and g be differentiable over an interval (a, b) with

g′(x) 6= 0 for every x in (a, b). Suppose that either

lim f(x) = 0 , and lim g(x) = 0 , (4.6)

or

lim f(x) = ±∞ , and lim g(x) = ±∞ , (4.7)

where lim stands for either

lim
x→a+

or lim
x→b−

.

Then

lim
f(x)

g(x)
= lim

f ′(x)

g′(x)
, (4.8)

whenever the limit on the right-hand side exists.

Example: To evaluate

lim
x→0

tan(x2)

sin2(x)
,

you can use the generalized l’Hopital rule twice to obtain

lim
x→0

tan(x2)

sin2(x)
= lim

x→0

sec2(x2)2x

2 sin(x) cos(x)

= lim
x→0

sec2(x2)2 + 8 sec2(x2) tan(x2)x2

2 cos2(x) − 2 sin2(x)

[

0

0

]

=
2

2
= 1 .
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Example: To evaluate

lim
x→0

sin(x) − x

sin(x3)
,

you can use the generalized l’Hopital rule three times to obtain

lim
x→0

sin(x) − x

sin(x3)
= lim

x→0

cos(x) − 1

cos(x3)3x2

= lim
x→0

− sin(x)

cos(x3)6x − sin(x3)9x4

= lim
x→0

− cos(x)

cos(x3)6 − sin(x3)54x3 − cos(x3)9x4

[

0

0

]

[

0

0

]

=
−1

6
= −1

6
.

This calulation should be contrasted with the Taylor approximation approach found at the

bottom of page 19.

The generalized l’Hopital rule can also be applied when

• lim f(x) = ±∞ and lim g(x) = ±∞,

• a = ±∞.

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

whenever the limit on the right-hand side exists.

Example: To evaluate

lim
x→∞

tanh(x2)

sinh2(x)
,

you can use the generalized l’Hopital rule twice to obtain

lim
x→∞

tanh(x2)

sinh2(x)
= lim

x→∞

sech2(x2)2x

2 sinh(x) cosh(x)

= lim
x→∞

sech2(x2)2 − 8 sech2(x2) tanh(x2)x2

2 cosh2(x) + 2 sinh2(x)

[

∞
∞

]

=
2

∞ = 0 .


