First In-Class Exam Solutions: Math 410
Section 0501, Professor Levermore
Friday, 1 October 2010
1. [10] Let X be a field. Use the field axioms to show that if z,y € X such that zy = 1
then y = 271,

Remark. The main point to keep in mind when doing problems like this is to justify
every step in your solution either by one or more of the axioms or by a previous step.

Solution. First x # 0 because if x = 0 then 1 = 2y = Oy = 0, which is a contradiction.
(The fact that Oy = 0 for every y € X was shown in class.) Then

y=uyl (mult. ident. axiom)

=1y mult. comm. axiom)

(
= (zz7")y  (mult. inv. axiom and z # 0)
= (z7'2)y  (mult. comm. axiom)
=z Y(ay) (mult. assoc. axiom)
=z (because zy = 1)
=gt (mult. ident. axiom).

Remark. For completeness, here is the proof that Oy = 0. Let y € X. The additive
identity axiom implies 0 = 0 4+ 0. The distributive axiom then gives the equality

y0=y(0+40) =y0+ 0.

Then
add. inv. axiom)

0=y0+ (- (y0))
= (y0 +y0) + (— (»0))
=30+ (y0+ (= (y0)))

(

(above equality)

(
=y0+0 (add. inv. axiom)

(

(

add. assoc. axiom)
=190 add. indent. axiom)

= Oy add. comm. axiom).



2. [15] Give a counterexample to each of the following false assertions.

(a) If a sequence {ag }ren in R is divergent then the subsequence {agy }ren is divergent.
(b) A countable intersection of nested nonempty open intervals is also nonempty.

()

¢) If limy_.o a; = 0 then Z ajp converges.
k=0

Solution (a). A simple counterexample is obtained by setting a; = (—1)* because
{(=1)*} diverges, while klim (—1)* =1.

Solution (b). A countable intersection of nested nonempty open intervals must have

the form o

ﬂ(&k, bk

k=0
where ay, < by and (agy1,bkr1) C (ag, by) for every k € N. Such an intersection that is
empty is obtained by setting a; = 0 and b, = 2% for every k € N.

Solution (c). A simple counterexample is obtained by setting ay = 1/(k + 1) because

=~ 1
]}LII;O Tl 0, while the harmonic series Z 1 diverges .

. [15] Consider the real sequence {cy }ren given by

 K+3
=g
with the convention that N ={0,1,2,...}.
(a) Write down the first three terms of the subsequence {cog11}ren-
(b) Write down hm mf ¢x and limsup ¢, . (No proof is needed here.)

k—o0
Solution (a). You are given that N ={0,1,2,---}, as was the convention in class and
in the notes (but in not the book). The first three terms of the subsequence {cop+1}ren
are therefore

for every k € N,
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Cl = —

Solution (b). Because cor > 0 while o541 < 0, and because

I 1 2k+3 1
im ¢y = lim —
koo T koo dk +2 20
while
I 1. 2k+4 1
m c = —
e, G2k S dk+4 27
one has that
li 1 lim inf 1
imsupc, = — iminfep, = —= .
k_)oop k 27 R k 2



4. [15] Let {ax}ren and {bg }ren be bounded, positive sequences in R.
(a) Prove that

lim sup (agby) < (hm sup ak) <lim sup bk> )

k—o0 k—o0 k—o0
(b) Write down an example for which equality does not hold above.
Solution (a). Let ¢y = agby for every k € N. For every k € N define

ay =sup{a; : | >k}, by =sup{b, : [ >k}, ¢ =sup{c : 1 > k}.

Because the sequences {ax}, {br}, and {cx} are positive and bounded above, the se-
quences {a}, {bx}, and {}, are positive and nonincreasing. The Monotonic Sequence
Theorem thereby implies that the sequences {a;}, {bz}, and {¢;} are convergent. By
the definition of lim sup we then have

limsupa, = hm ay , lim sup by, = hm by, limsup ¢, = hm Cr. .
k—oo k—o0 k—o0

The key observation is that for every k € N we have
o =aby <apb, for every [ >k,
which yields the inequality
G = sup{c : [ >k} <aby.
This inequality and the properties of limits then implies

lim sup (axby) = limsup ¢
k—oo k—oo
= hm Ek
k—oo

< lim (EkBk)

k—o0

= (tim ) (fime )
= (lim sup ak) <lim sup bk) .
k—o0 k—o0

Solution (b). Let a; = 209" and b, = 209" for every k € N. Clearly

lnkn sup ap = hm Qs = 2, h;n sup b, = hm bor11 = 2,
while (because axby = 1 for every k € N)
lnknsup (arby) = hm (arbg) = 1.
Therefore .
limsup (apby) =1 <4=2-2= (lim sup ak) (hm sup bk) )

k—o00 k—o0 k—o00



5. [10] Let X°¢ denote the closure of any subset X of R. Let A and B be subsets of R.
Prove that A°U B° C (AU B)°.

Remark. You must show that every element of A°U B¢ is also an element of (AU B)°.
If your proof directly uses the definition of closure then its first step should be clear.

Solution. Let z € A°U B¢ be arbitrary. Then either z € A° or x € B¢. (Both can
be true.) Without loss of generality we can assume that x € A°. By the definition of
closure, there exists a sequence {zy}ren contained in A such that zy — x as k — oo.
But the sequence {xy }ren is therefore contained in both AU B while x, — z as k — oo.
By the definition of closure, it follows that = € (AU B)°. But because x € A°U B¢ was
arbitrary, we conclude that A°U B C (AU B)°.

Remark. You could also have built a proof around the fact that if C' C D then their
closures satisfy C¢ C D¢. (This is a fact you should be able to prove directly from the
definition of closure.)

Alternative Solution. Because A C (AUB) and B C (AUB), we know A° C (AUB)*
and B° C (AU B)°. We conclude that A°U B¢ C (AU B)°.

6. [15] Determine all a € R for which

i <k2+1)a converges
ver .
kKt 41

k=0

Give your reasoning.

Solution. The series converges for a € %, o0) and diverges otherwise. Because
41 o1
E*+1 k2

one sees that the original series should be compared with the p-series

=1
P
k=1

This is best handled by Limit Comparison Test. Indeed, because for every a € R one
has

as k — 00,

lim
k—o0 1 k—o0

kKt +1

E24+1\“
k441 , <k4+k2)“
- =lm |(——| =1,

L2a
the Limit Comparison Test then implies that

i (k2 + 1)[1 converges < i i converges
[ ;20 '

k=0 k=1

Because the p = 2a for the p-series, it converges for a € (%, oo) and diverges otherwise.
The same is therefore true for the original series.



7. [10] Let {ax}ren be a real sequence and {a,, } be any subsequence of it. Show that

[e.e] o0
Z ap converges absolutely =— Z an, converges absolutely .
k=0 k=0

Solution. By the definition of absolute convergence

o o0
E ar converges absolutely <= E lax| converges,
k=0 k=0
oo o0
E a,, converges absolutely <= E |a,,| converges.
k=0 k=0

For every m,n € N define the sequences {p,,} and {g,} of partial sums

m n
pm:Z|ank|a Qn:Z|ak|
k=0 k=0

It is clear that these sequences are nondecreasing and that the Monotonic Sequence
Theorem implies

e e}

Z lag| converges <= {g,} is bounded above,
k=0

Z |a,,| converges <= {p,} is bounded above.
k=0
Moreover p,, and g, satisfy the inequality

m Nm
Pm = Z |lan, | < Z lax| = qn,, for every m € N.
k=0 k=0

This inquality shows that if {¢,} is bounded above then {p,,} is bounded above. Hence,

Z ar, converges absolutely <= {g,} is bounded above
k=0
=  {pm} is bounded above

o0
= Z an, converges absolutely .
k=0

8. [10] Let {bx}ren be a sequence in R and let A be a subset of R. Write the negations of
the following assertions.
(a) “There exists m € R such that b; > m eventually as j — 00.”
(b) “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “For every m € R one has b; < m frequently as j — 00.”

Solution (b). “There is a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.”

Remark. The answer “There is a sequence in A such that no subsequence of it converges
to a limit in A.” does not fully carry the negation through.



