First In-Class Exam Solutions: Math 410 Section 0501, Professor Levermore Friday, 1 October 2010

1. [10] Let X be a field. Use the field axioms to show that if $x, y \in X$ such that xy = 1 then $y = x^{-1}$.

Remark. The main point to keep in mind when doing problems like this is to justify every step in your solution either by one or more of the axioms or by a previous step.

Solution. First $x \neq 0$ because if x = 0 then 1 = xy = 0y = 0, which is a contradiction. (The fact that 0y = 0 for every $y \in X$ was shown in class.) Then

y = y 1 (mult. ident. axiom) = 1 y (mult. comm. axiom) $= (xx^{-1}) y$ (mult. inv. axiom and $x \neq 0$) $= (x^{-1}x) y$ (mult. comm. axiom) $= x^{-1}(xy)$ (mult. assoc. axiom) $= x^{-1}1$ (because xy = 1) $= x^{-1}$ (mult. ident. axiom).

Remark. For completeness, here is the proof that 0y = 0. Let $y \in X$. The additive identity axiom implies 0 = 0 + 0. The distributive axiom then gives the equality

$$y0 = y(0+0) = y0 + y0$$
.

Then

(add. inv. axiom)
(above equality)
(add. assoc. axiom)
(add. inv. axiom)
(add. indent. axiom)
(add. comm. axiom).

2. [15] Give a counterexample to each of the following false assertions.

- (a) If a sequence $\{a_k\}_{k\in\mathbb{N}}$ in \mathbb{R} is divergent then the subsequence $\{a_{2k}\}_{k\in\mathbb{N}}$ is divergent.
- (b) A countable intersection of nested nonempty open intervals is also nonempty.

(c) If
$$\lim_{k\to\infty} a_k = 0$$
 then $\sum_{k=0}^{\infty} a_k$ converges.

Solution (a). A simple counterexample is obtained by setting $a_k = (-1)^k$ because

$$\{(-1)^k\}$$
 diverges, while $\lim_{k \to \infty} (-1)^{2k} = 1$

Solution (b). A countable intersection of nested nonempty open intervals must have the form

$$\bigcap_{k=0}^{\infty} (a_k, b_k)$$

where $a_k < b_k$ and $(a_{k+1}, b_{k+1}) \subset (a_k, b_k)$ for every $k \in \mathbb{N}$. Such an intersection that is empty is obtained by setting $a_k = 0$ and $b_k = 2^{-k}$ for every $k \in \mathbb{N}$.

Solution (c). A simple counterexample is obtained by setting $a_k = 1/(k+1)$ because

$$\lim_{k \to \infty} \frac{1}{k+1} = 0, \quad \text{while the harmonic series} \quad \sum_{k=0}^{\infty} \frac{1}{k+1} \quad \text{diverges} \,.$$

3. [15] Consider the real sequence $\{c_k\}_{k\in\mathbb{N}}$ given by

$$c_k = (-1)^k \frac{k+3}{2k+2}$$
 for every $k \in \mathbb{N}$,

with the convention that $\mathbb{N} = \{0, 1, 2, \dots\}$.

- (a) Write down the first three terms of the subsequence $\{c_{2k+1}\}_{k\in\mathbb{N}}$.
- (b) Write down $\liminf_{k\to\infty} c_k$ and $\limsup_{k\to\infty} c_k$. (No proof is needed here.)

Solution (a). You are given that $\mathbb{N} = \{0, 1, 2, \dots\}$, as was the convention in class and in the notes (but in not the book). The first three terms of the subsequence $\{c_{2k+1}\}_{k \in \mathbb{N}}$ are therefore

$$c_1 = -\frac{4}{4} = -1$$
, $c_3 = -\frac{6}{8} = -\frac{3}{4}$, $c_5 = -\frac{8}{12} = -\frac{2}{3}$.

Solution (b). Because $c_{2k} > 0$ while $c_{2k+1} < 0$, and because

$$\lim_{k \to \infty} c_{2k} = \lim_{k \to \infty} \frac{2k+3}{4k+2} = \frac{1}{2},$$

while

$$\lim_{k \to \infty} c_{2k+1} = -\lim_{k \to \infty} \frac{2k+4}{4k+4} = -\frac{1}{2},$$

-1

one has that

$$\limsup_{k \to \infty} c_k = \frac{1}{2}, \qquad \liminf_{k \to \infty} c_k = -\frac{1}{2}.$$

4. [15] Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be bounded, positive sequences in \mathbb{R} . (a) Prove that

$$\limsup_{k \to \infty} (a_k b_k) \le \left(\limsup_{k \to \infty} a_k\right) \left(\limsup_{k \to \infty} b_k\right) \,.$$

(b) Write down an example for which equality does not hold above. Solution (a). Let $c_k = a_k b_k$ for every $k \in \mathbb{N}$. For every $k \in \mathbb{N}$ define

 $\overline{a}_k = \sup\{a_l : l \ge k\}, \qquad \overline{b}_k = \sup\{b_l : l \ge k\}, \qquad \overline{c}_k = \sup\{c_l : l \ge k\}.$

Because the sequences $\{a_k\}$, $\{b_k\}$, and $\{c_k\}$ are positive and bounded above, the sequences $\{\overline{a}_k\}$, $\{\overline{b}_k\}$, and $\{\overline{c}_k\}$, are positive and nonincreasing. The Monotonic Sequence Theorem thereby implies that the sequences $\{\overline{a}_k\}$, $\{\overline{b}_k\}$, and $\{\overline{c}_k\}$ are convergent. By the definition of lim sup we then have

$$\limsup_{k \to \infty} a_k = \lim_{k \to \infty} \overline{a}_k \,, \qquad \limsup_{k \to \infty} b_k = \lim_{k \to \infty} \overline{b}_k \,, \qquad \limsup_{k \to \infty} c_k = \lim_{k \to \infty} \overline{c}_k \,.$$

The key observation is that for every $k \in \mathbb{N}$ we have

$$c_l = a_l b_l \le \overline{a}_k \overline{b}_k$$
 for every $l \ge k$

which yields the inequality

$$\overline{c}_k = \sup\{c_l : l \ge k\} \le \overline{a}_k \overline{b}_k$$
.

This inequality and the properties of limits then implies

$$\lim_{k \to \infty} \sup (a_k b_k) = \limsup_{k \to \infty} c_k$$

=
$$\lim_{k \to \infty} \overline{c}_k$$

$$\leq \lim_{k \to \infty} (\overline{a}_k \overline{b}_k)$$

=
$$\left(\lim_{k \to \infty} \overline{a}_k\right) \left(\lim_{k \to \infty} \overline{b}_k\right)$$

=
$$\left(\limsup_{k \to \infty} a_k\right) \left(\limsup_{k \to \infty} b_k\right)$$

Solution (b). Let $a_k = 2^{(-1)^k}$ and $b_k = 2^{(-1)^{k+1}}$ for every $k \in \mathbb{N}$. Clearly

$$\limsup_{k \to \infty} a_k = \lim_{k \to \infty} a_{2k} = 2, \qquad \limsup_{k \to \infty} b_k = \lim_{k \to \infty} b_{2k+1} = 2,$$

while (because $a_k b_k = 1$ for every $k \in \mathbb{N}$)

$$\limsup_{k \to \infty} (a_k b_k) = \lim_{k \to \infty} (a_k b_k) = 1.$$

Therefore

$$\limsup_{k \to \infty} (a_k b_k) = 1 < 4 = 2 \cdot 2 = \left(\limsup_{k \to \infty} a_k\right) \left(\limsup_{k \to \infty} b_k\right) \,.$$

5. [10] Let X^c denote the closure of any subset X of \mathbb{R} . Let A and B be subsets of \mathbb{R} . Prove that $A^c \cup B^c \subset (A \cup B)^c$.

Remark. You must show that every element of $A^c \cup B^c$ is also an element of $(A \cup B)^c$. If your proof directly uses the definition of closure then its first step should be clear.

Solution. Let $x \in A^c \cup B^c$ be arbitrary. Then either $x \in A^c$ or $x \in B^c$. (Both can be true.) Without loss of generality we can assume that $x \in A^c$. By the definition of closure, there exists a sequence $\{x_k\}_{k\in\mathbb{N}}$ contained in A such that $x_k \to x$ as $k \to \infty$. But the sequence $\{x_k\}_{k\in\mathbb{N}}$ is therefore contained in both $A \cup B$ while $x_k \to x$ as $k \to \infty$. By the definition of closure, it follows that $x \in (A \cup B)^c$. But because $x \in A^c \cup B^c$ was arbitrary, we conclude that $A^c \cup B^c \subset (A \cup B)^c$.

Remark. You could also have built a proof around the fact that if $C \subset D$ then their closures satisfy $C^c \subset D^c$. (This is a fact you should be able to prove directly from the definition of closure.)

Alternative Solution. Because $A \subset (A \cup B)$ and $B \subset (A \cup B)$, we know $A^c \subset (A \cup B)^c$ and $B^c \subset (A \cup B)^c$. We conclude that $A^c \cup B^c \subset (A \cup B)^c$.

6. [15] Determine all $a \in \mathbb{R}$ for which

$$\sum_{k=0}^{\infty} \left(\frac{k^2+1}{k^4+1}\right)^a \quad \text{converges} \,.$$

Give your reasoning.

Solution. The series converges for $a \in (\frac{1}{2}, \infty)$ and diverges otherwise. Because

$$\frac{k^2+1}{k^4+1} \sim \frac{1}{k^2} \quad \text{as } k \to \infty \,,$$

one sees that the original series should be compared with the p-series

$$\sum_{k=1}^{\infty} \frac{1}{k^{2a}}.$$

This is best handled by Limit Comparison Test. Indeed, because for every $a \in \mathbb{R}$ one has $(L^2 + 1)^a$

$$\lim_{k \to \infty} \frac{\left(\frac{k^2 + 1}{k^4 + 1}\right)}{\frac{1}{k^{2a}}} = \lim_{k \to \infty} \left(\frac{k^4 + k^2}{k^4 + 1}\right)^a = 1,$$

the Limit Comparison Test then implies that

$$\sum_{k=0}^{\infty} \left(\frac{k^2+1}{k^4+1}\right)^a \quad \text{converges} \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty} \frac{1}{k^{2a}} \quad \text{converges} \; .$$

Because the p = 2a for the *p*-series, it converges for $a \in (\frac{1}{2}, \infty)$ and diverges otherwise. The same is therefore true for the original series. 7. [10] Let $\{a_k\}_{k\in\mathbb{N}}$ be a real sequence and $\{a_{n_k}\}$ be any subsequence of it. Show that

$$\sum_{k=0}^{\infty} a_k \quad \text{converges absolutely} \quad \Longrightarrow \quad \sum_{k=0}^{\infty} a_{n_k} \quad \text{converges absolutely}$$

Solution. By the definition of absolute convergence

$$\sum_{k=0}^{\infty} a_k \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} |a_k| \quad \text{converges} ,$$
$$\sum_{k=0}^{\infty} a_{n_k} \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} |a_{n_k}| \quad \text{converges}$$

For every $m, n \in \mathbb{N}$ define the sequences $\{p_m\}$ and $\{q_n\}$ of partial sums

$$p_m = \sum_{k=0}^m |a_{n_k}|, \qquad q_n = \sum_{k=0}^n |a_k|.$$

It is clear that these sequences are nondecreasing and that the Monotonic Sequence Theorem implies

$$\sum_{k=0}^{\infty} |a_k| \quad \text{converges} \quad \Longleftrightarrow \quad \{q_n\} \text{ is bounded above },$$
$$\sum_{k=0}^{\infty} |a_{n_k}| \quad \text{converges} \quad \Longleftrightarrow \quad \{p_m\} \text{ is bounded above }.$$

Moreover p_m and q_n satisfy the inequality

$$p_m = \sum_{k=0}^m |a_{n_k}| \le \sum_{k=0}^{n_m} |a_k| = q_{n_m} \quad \text{for every } m \in \mathbb{N}.$$

This inquality shows that if $\{q_n\}$ is bounded above then $\{p_m\}$ is bounded above. Hence,

$$\sum_{k=0}^{\infty} a_k \quad \text{converges absolutely} \quad \iff \quad \{q_n\} \text{ is bounded above}$$
$$\implies \quad \{p_m\} \text{ is bounded above}$$
$$\iff \quad \sum_{k=0}^{\infty} a_{n_k} \quad \text{converges absolutely} \,.$$

8. [10] Let $\{b_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R} . Write the negations of the following assertions.

(a) "There exists $m \in \mathbb{R}$ such that $b_j > m$ eventually as $j \to \infty$."

(b) "Every sequence in A has a subsequence that converges to a limit in A."

Solution (a). "For every $m \in \mathbb{R}$ one has $b_j \leq m$ frequently as $j \to \infty$."

Solution (b). "There is a sequence in A such that every subsequence of it either diverges or converges to a limit outside A."

Remark. The answer "There is a sequence in A such that no subsequence of it converges to a limit in A." does not fully carry the negation through.