
First In-Class Exam Solutions: Math 410
Section 0501, Professor Levermore

Friday, 1 October 2010

1. [10] Let X be a field. Use the field axioms to show that if x, y ∈ X such that xy = 1
then y = x−1.

Remark. The main point to keep in mind when doing problems like this is to justify

every step in your solution either by one or more of the axioms or by a previous step.

Solution. First x 6= 0 because if x = 0 then 1 = xy = 0y = 0, which is a contradiction.
(The fact that 0y = 0 for every y ∈ X was shown in class.) Then

y = y 1 (mult. ident. axiom)

= 1 y (mult. comm. axiom)

=
(

xx−1
)

y (mult. inv. axiom and x 6= 0)

=
(

x−1x
)

y (mult. comm. axiom)

= x−1(xy) (mult. assoc. axiom)

= x−11 (because xy = 1)

= x−1 (mult. ident. axiom) .

Remark. For completeness, here is the proof that 0y = 0. Let y ∈ X. The additive
identity axiom implies 0 = 0 + 0. The distributive axiom then gives the equality

y0 = y(0 + 0) = y0 + y0 .

Then
0 = y0 +

(

− (y0)
)

(add. inv. axiom)

= (y0 + y0) +
(

− (y0)
)

(above equality)

= y0 +
(

y0 +
(

− (y0)
))

(add. assoc. axiom)

= y0 + 0 (add. inv. axiom)

= y0 (add. indent. axiom)

= 0y (add. comm. axiom) .
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2. [15] Give a counterexample to each of the following false assertions.
(a) If a sequence {ak}k∈N in R is divergent then the subsequence {a2k}k∈N is divergent.
(b) A countable intersection of nested nonempty open intervals is also nonempty.

(c) If limk→∞ ak = 0 then
∞

∑

k=0

ak converges.

Solution (a). A simple counterexample is obtained by setting ak = (−1)k because

{(−1)k} diverges , while lim
k→∞

(−1)2k = 1 .

Solution (b). A countable intersection of nested nonempty open intervals must have
the form

∞
⋂

k=0

(ak, bk)

where ak < bk and (ak+1, bk+1) ⊂ (ak, bk) for every k ∈ N. Such an intersection that is
empty is obtained by setting ak = 0 and bk = 2−k for every k ∈ N.

Solution (c). A simple counterexample is obtained by setting ak = 1/(k + 1) because

lim
k→∞

1

k + 1
= 0 , while the harmonic series

∞
∑

k=0

1

k + 1
diverges .

3. [15] Consider the real sequence {ck}k∈N given by

ck = (−1)k k + 3

2k + 2
for every k ∈ N ,

with the convention that N = {0, 1, 2, . . .}.
(a) Write down the first three terms of the subsequence {c2k+1}k∈N.
(b) Write down lim inf

k→∞

ck and lim sup
k→∞

ck . (No proof is needed here.)

Solution (a). You are given that N = {0, 1, 2, · · · }, as was the convention in class and
in the notes (but in not the book). The first three terms of the subsequence {c2k+1}k∈N

are therefore

c1 = −4
4

= −1 , c3 = −6
8

= −3
4
, c5 = − 8

12
= −2

3
.

Solution (b). Because c2k > 0 while c2k+1 < 0, and because

lim
k→∞

c2k = lim
k→∞

2k + 3

4k + 2
=

1

2
,

while

lim
k→∞

c2k+1 = − lim
k→∞

2k + 4

4k + 4
= −

1

2
,

one has that

lim sup
k→∞

ck =
1

2
, lim inf

k→∞

ck = −
1

2
.
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4. [15] Let {ak}k∈N and {bk}k∈N be bounded, positive sequences in R.
(a) Prove that

lim sup
k→∞

(akbk) ≤

(

lim sup
k→∞

ak

) (

lim sup
k→∞

bk

)

.

(b) Write down an example for which equality does not hold above.

Solution (a). Let ck = akbk for every k ∈ N. For every k ∈ N define

ak = sup{al : l ≥ k} , bk = sup{bl : l ≥ k} , ck = sup{cl : l ≥ k} .

Because the sequences {ak}, {bk}, and {ck} are positive and bounded above, the se-
quences {ak}, {bk}, and {ck}, are positive and nonincreasing. The Monotonic Sequence
Theorem thereby implies that the sequences {ak}, {bk}, and {ck} are convergent. By
the definition of lim sup we then have

lim sup
k→∞

ak = lim
k→∞

ak , lim sup
k→∞

bk = lim
k→∞

bk , lim sup
k→∞

ck = lim
k→∞

ck .

The key observation is that for every k ∈ N we have

cl = albl ≤ akbk for every l ≥ k ,

which yields the inequality

ck = sup{cl : l ≥ k} ≤ akbk .

This inequality and the properties of limits then implies

lim sup
k→∞

(akbk) = lim sup
k→∞

ck

= lim
k→∞

ck

≤ lim
k→∞

(akbk)

=
(

lim
k→∞

ak

)(

lim
k→∞

bk

)

=

(

lim sup
k→∞

ak

) (

lim sup
k→∞

bk

)

.

Solution (b). Let ak = 2(−1)k

and bk = 2(−1)k+1

for every k ∈ N. Clearly

lim sup
k→∞

ak = lim
k→∞

a2k = 2 , lim sup
k→∞

bk = lim
k→∞

b2k+1 = 2 ,

while (because akbk = 1 for every k ∈ N)

lim sup
k→∞

(akbk) = lim
k→∞

(akbk) = 1 .

Therefore

lim sup
k→∞

(akbk) = 1 < 4 = 2 · 2 =

(

lim sup
k→∞

ak

)(

lim sup
k→∞

bk

)

.
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5. [10] Let Xc denote the closure of any subset X of R. Let A and B be subsets of R.
Prove that Ac ∪ Bc ⊂ (A ∪ B)c.

Remark. You must show that every element of Ac ∪Bc is also an element of (A∪B)c.
If your proof directly uses the definition of closure then its first step should be clear.

Solution. Let x ∈ Ac ∪ Bc be arbitrary. Then either x ∈ Ac or x ∈ Bc. (Both can
be true.) Without loss of generality we can assume that x ∈ Ac. By the definition of
closure, there exists a sequence {xk}k∈N contained in A such that xk → x as k → ∞.
But the sequence {xk}k∈N is therefore contained in both A∪B while xk → x as k → ∞.
By the definition of closure, it follows that x ∈ (A∪B)c. But because x ∈ Ac ∪Bc was
arbitrary, we conclude that Ac ∪ Bc ⊂ (A ∪ B)c.

Remark. You could also have built a proof around the fact that if C ⊂ D then their
closures satisfy Cc ⊂ Dc. (This is a fact you should be able to prove directly from the
definition of closure.)

Alternative Solution. Because A ⊂ (A∪B) and B ⊂ (A∪B), we know Ac ⊂ (A∪B)c

and Bc ⊂ (A ∪ B)c. We conclude that Ac ∪ Bc ⊂ (A ∪ B)c.

6. [15] Determine all a ∈ R for which
∞

∑

k=0

(

k2 + 1

k4 + 1

)a

converges .

Give your reasoning.

Solution. The series converges for a ∈ (1
2
,∞) and diverges otherwise. Because

k2 + 1

k4 + 1
∼

1

k2
as k → ∞ ,

one sees that the original series should be compared with the p-series
∞

∑

k=1

1

k2a
.

This is best handled by Limit Comparison Test. Indeed, because for every a ∈ R one
has

lim
k→∞

(

k2 + 1

k4 + 1

)a

1

k2a

= lim
k→∞

(

k4 + k2

k4 + 1

)a

= 1 ,

the Limit Comparison Test then implies that
∞

∑

k=0

(

k2 + 1

k4 + 1

)a

converges ⇐⇒
∞

∑

k=1

1

k2a
converges .

Because the p = 2a for the p-series, it converges for a ∈ (1
2
,∞) and diverges otherwise.

The same is therefore true for the original series.
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7. [10] Let {ak}k∈N be a real sequence and {ank
} be any subsequence of it. Show that

∞
∑

k=0

ak converges absolutely =⇒

∞
∑

k=0

ank
converges absolutely .

Solution. By the definition of absolute convergence
∞

∑

k=0

ak converges absolutely ⇐⇒
∞

∑

k=0

|ak| converges ,

∞
∑

k=0

ank
converges absolutely ⇐⇒

∞
∑

k=0

|ank
| converges .

For every m, n ∈ N define the sequences {pm} and {qn} of partial sums

pm =
m

∑

k=0

|ank
| , qn =

n
∑

k=0

|ak| .

It is clear that these sequences are nondecreasing and that the Monotonic Sequence
Theorem implies

∞
∑

k=0

|ak| converges ⇐⇒ {qn} is bounded above ,

∞
∑

k=0

|ank
| converges ⇐⇒ {pm} is bounded above .

Moreover pm and qn satisfy the inequality

pm =

m
∑

k=0

|ank
| ≤

nm
∑

k=0

|ak| = qnm
for every m ∈ N .

This inquality shows that if {qn} is bounded above then {pm} is bounded above. Hence,
∞

∑

k=0

ak converges absolutely ⇐⇒ {qn} is bounded above

=⇒ {pm} is bounded above

⇐⇒

∞
∑

k=0

ank
converges absolutely .

8. [10] Let {bk}k∈N be a sequence in R and let A be a subset of R. Write the negations of
the following assertions.
(a) “There exists m ∈ R such that bj > m eventually as j → ∞.”
(b) “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “For every m ∈ R one has bj ≤ m frequently as j → ∞.”

Solution (b). “There is a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.”

Remark. The answer “There is a sequence in A such that no subsequence of it converges
to a limit in A.” does not fully carry the negation through.


