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1. [10] Give a counterexample to each of the following false assertions.
(a) If f : R → R is differentiable and increasing over R then f ′ > 0 over R.

Solution. A simple example that we discussed in class is given by

f(x) = x3 for every x ∈ R .

Clearly f : R → R is differentiable and increasing over R, yet f ′(x) = 3x2 vanishes
at x = 0.

(b) If f : (a, b) → R is continuous then f has a minimum or a maximum over (a, b).

Solution. A simple example that we discussed in class is given by

f(x) = x for every x ∈ (−1, 1) .

Clearly f : (−1, 1) → R is continuous, yet does not have a minimum or a maximum
over (−1, 1).

2. [10] Let f : R → R be differentiable. Prove it is continuous.

Solution. Let a ∈ R be arbitrary. Because f is differentialble at a one knows that

lim
x→a

f(x) − f(a)

x − a
= f ′(a) .

Because for every x 6= a one has the identity

f(x) = f(a) +
f(x) − f(a)

x − a
(x − a) ,

by the proporties of limits we see that

lim
x→a

f(x) = lim
x→a

(

f(a) +
f(x) − f(a)

x − a
(x − a)

)

= lim
x→a

f(a) + lim
x→a

f(x) − f(a)

x − a
lim
x→a

(x − a)

= f(a) + f ′(a) · 0 = f(a) .

Hence, f is continuous at a. But a ∈ R was arbitrary, so therefore f : R → R is
continuous.

3. [15] Show that

sin(x) =
∞

∑

k=0

(−1)k

(2k + 1)!
x2k+1 for every x ∈ R .

Solution. Let f(x) = sin(x). Then for every k ∈ N one has

f (2k)(x) = (−1)k sin(x) , f (2k+1)(x) = (−1)k cos(x) .

Because
f (2k)(0) = 0 , f (2k+1)(0) = (−1)k ,
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the series is just the formal Taylor series for f centered at 0. Moreover, we see that the
nth partial sum can be expressed as a Taylor polynomial approximation in two ways:

n
∑

k=0

(−1)k

(2k + 1)!
x2k+1 = T

(2n+1)
0 sin(x) = T

(2n+2)
0 sin(x) .

If we use the last expression then the Lagrange Remainder Theorem states that for
every x ∈ R there exists some p between 0 and x such that

sin(x) = T
(2n+2)
0 sin(x) +

(−1)n+1

(2n + 3)!
cos(p)x2n+3 .

Hence, for every x ∈ R

∣

∣

∣

∣

sin(x) −

n
∑

k=0

(−1)k

(2k + 1)!
x2k+1

∣

∣

∣

∣

≤
1

(2n + 3)!
|x|2n+3 .

Because for every x ∈ R

lim
n→∞

1

(2n + 3)!
|x|2n+3 = 0 ,

the sequence of partial sums therefore converges to sin(x). �

4. [15] Prove that for every x > −1 one has

1 + 5
4
x ≤ (1 + x)

5

4 .

Solution. The most direct approach to this problem uses the Lagrange Remainder
Theorem. Define f(x) = (1 + x)

5

4 for every x > −1. Then f is twice differentiable with

f ′(x) = 5
4
(1 + x)

1

4 , f ′′(x) = 5
16

(1 + x)−
3

4 .

By the Lagrange Remainder Theorem for every x > −1 there exists a p between 0 and
x such that

f(x) = f(0) + f ′(0)x + 1
2
f ′′(p)x2 .

Hence,

(1 + x)
1

4 − 1 − 5
4
x = 5

32
(1 + p)−

3

4 x2 ≥ 0 .

The result follows. �

Second Solution. Another approach to this problem uses the Monotonicity Theorem.
Define g(x) = (1 + x)

5

4 − 1 − 5
4
x for every x > −1. Then g is differentiable with

g′(x) = 5
4

[

(1 + x)
1

4 − 1
]

.

Clearly, g′(x) < 0 for x ∈ (−1, 0) while g′(x) > 0 for x ∈ (0,∞). By the Monotonicity
Theorem, g is decreasing over x ∈ (−1, 0] and g is increasing over [0,∞). Therefore 0 is
a global minimizer of g over (−1,∞), and g(0) = 0 is the minimum of g over (−1,∞).
Hence, for every x > −1 we have

(1 + x)
5

4 − 1 − 5
4
x = g(x) ≥ g(0) = 0 .

The result follows. �
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5. [10] Evaluate the following limit. Give your reasoning. (You may use theorems we have
proved in class.)

lim
x→3

x4 − 81

x2 − 9
.

Solution. For every x 6= 1 one has

x4 − 81

x2 − 9
= x2 + 9 .

Because the right-hand side above is continuous over R, one has

lim
x→3

x4 − 81

x2 − 9
= lim

x→3
x2 + 9 = 9 + 9 = 18 .

Second Solution. Because the limit has a 0/0 indeterminant form, by the l’Hopital
rule and the continuity of rational functions we obtain

lim
x→3

x4 − 81

x2 − 9
= lim

x→3

4x3

2x
=

4 · 33

2 · 3
= 2 · 32 = 18 .

6. [15] Let f : R → R be differentiable. Suppose the following equation has at most one
solution:

f ′(x) = 0 , x ∈ R .

Show the following equation has at most two solutions:

f(x) = 0 , x ∈ R .

Solution. Suppose that the equation f ′(x) = 0 has at most one solution while the
equation f(x) = 0 has (at least) three solutions {x0, x1, x2}. Without loss of generality
we can assume that

−∞ < x0 < x1 < x2 < ∞ .

Then for each i = 1, 2 one knows that
• f : [xi−1, xi] → R is differentiable (and hence continuous),
• f(xi−1) = f(xi) = 0.

Rolle’s Theorem then implies that for each i = 1, 2 there exists a point pi ∈ (xi−1, xi)
such that f ′(pi) = 0. Because the intervals (x0, x1) and (x1, x2) are disjoint, the points
p1 and p2 are distinct. The equation f ′(x) = 0 therefore has at least two solutions,
which contradicts our starting supposition. �

Second Solution. There are two cases to consider: either f ′(x) = 0 has no solutions
or it has exactly one solution.

If f ′(x) = 0 has no solutions over R then by the Sign Dichotomy Theorem f ′ must be
either negative or positive over R. The Monotonicity Theorem then implies that f must
be monotonic (and hence one-to-one) over R. The equation f(x) = 0 can therefore have
at most one solution.

If f ′(x) = 0 has exactly one solution c then by the Sign Dichotomy Theorem f ′ must
be either negative or positive over each of the disjoint intervals

(−∞, c) , (c,∞) .



4

The Monotonicity Theorem then implies that f must be monotonic (and hence one-to-
one) over each of the two intervals

(−∞, c] , [c,∞) .

The equation f(x) = 0 can therefore have at most one solution in each of these intervals.
Because the union of these intervals is R, the equation f(x) = 0 can have at most two
solutions. �

Remark. The second solution rests upon the Sign Dichotomy Theorem and the Mono-
tonicity Theorem. This machinery is much heavier than that used in the first solution,
which rests only upon Rolle’s Theorem. Indeed, the proof of the Monotonicity Theorem
rests upon the Mean-Value Theorem, the proof of which rests upon Rolle’s Theorem.

7. [15] Let D ⊂ R and f : D → R be uniformly continuous over D. Let {xk}k∈N be a
Cauchy sequence contained in D. Show that {f(xk)}k∈N is a convergent sequence.

Solution. Let ǫ > 0. Because f : (a, b) → R is uniformly continuous over (a, b), there
exists a δ > 0 such that for every x, y ∈ D one has

|x − y| < δ =⇒
∣

∣f(x) − f(y)
∣

∣ < ǫ .

Because {xk}k∈N is a Cauchy sequence, there exists an N ∈ N such that for every
k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ .

Hence, for every k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ

=⇒
∣

∣f(xk) − f(xl)
∣

∣ < ǫ .

Therefore {f(xk)}k∈N is a Cauchy sequence. By the Cauchy Criterion Theorem we
conclude that {f(xk)}k∈N is a convergent sequence. �

8. [10] Let D ⊂ R and f : D → R. Let c be a limit point of D. Write negations of the
following assertions.
(a) “For every sequence {xk}k∈N ⊂ D − {c} one has

lim
k→∞

|xk − c| = 0 =⇒ lim
k→∞

f(xk) = ∞ .”

Solution. There exists a sequence {xk}k∈N ⊂ D − {c} such that

lim
k→∞

|xk − c| = 0 and lim inf
k→∞

f(xk) < ∞ .

(b) “For every M ∈ R there exists a δ > 0 such that for every x ∈ D one has

0 < |x − c| < δ =⇒ f(x) > M .”

Solution. There exists M ∈ R such that for every δ > 0 there exists x ∈ D such
that

0 < |x − c| < δ and f(x) ≤ M .


