Tenth Homework: MATH 410 Due Wednesday, 10 November 2010

- 1. Exercise 1 of Section 3.4 in the text.
- 2. Exercise 2 of Section 3.4 in the text.
- 3. Exercise 3 of Section 3.4 in the text.
- 4. Exercise 6 of Section 3.4 in the text.
- 5. Exercise 7 of Section 3.4 in the text.
- 6. Exercise 11 of Section 3.4 in the text.
- 7. Let $f(x) = \sinh(x)$ for every $x \in \mathbb{R}$. Then for every $k \in \mathbb{N}$ and every $x \in \mathbb{R}$ one has

$$f^{(2k)}(x) = \sinh(x), \qquad f^{(2k+1)}(x) = \cosh(x).$$

Show that

$$\sinh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} \quad \text{for every } x \in \mathbb{R}.$$

8. Suppose that $f:(a,b) \to \mathbb{R}$ is twice differentiable and that $f'':(a,b) \to \mathbb{R}$ is bounded over (a,b). Show that there exists an $M \in \mathbb{R}_+$ such that for all points $x, y \in (a,b)$ one has

$$\left|f'(x) - f'(y)\right| \le M \left|x - y\right|$$

9. Prove that for every x > 0 one has

$$1 + \frac{3}{2}x < (1+x)^{\frac{3}{2}} < 1 + \frac{3}{2}x + \frac{3}{8}x^2.$$

10. Let $D \subset \mathbb{R}$. A function $f : D \to \mathbb{R}$ is said to be Hölder continuous of order $\alpha \in (0, 1]$ if there exists a $C \in \mathbb{R}_+$ such that for every $x, y \in D$ one has

$$|f(x) - f(y)| \le C |x - y|^{\alpha}.$$

Show that if $f: D \to \mathbb{R}$ is Hölder continuous of order α for some $\alpha \in (0, 1]$ then it is uniformly continuous over D.

11. Let $\alpha \in (0, 1)$. Let $f : [0, \infty) \to \mathbb{R}$ be defined by $f(x) = x^{\alpha}$. Show that f is uniformly continuous over $[0, \infty)$. Hint: Apply the result of the previous problem after showing that

$$|x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}$$
 for every $x, y \in [0, \infty)$.

- 12. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$. Write negations of the following assertions.
 - (a) "For all sequences $\{x_k\}_{k\in\mathbb{N}}$ and $\{y_k\}_{k\in\mathbb{N}}$ contained in D one has

$$\lim_{k \to \infty} |x_k - y_k| = 0 \quad \Longrightarrow \quad \lim_{k \to \infty} \left| f(x_k) - f(y_k) \right| = 0.$$

(b) "For every $\epsilon > 0$ there exists a $\delta > 0$ such that for all points $x, y \in D$ one has

$$|x-y| < \delta \implies |f(x) - f(y)| < \epsilon$$
.