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Fourteenth Homework: MATH 410
Due Wednesday, 8 December 2010

. When ¢ € N the binomial expansion yields
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Now let ¢ € R — N. Let f(z) = (1 + 2)? for every z > —1. Then
fO@)=qlg—1)---(g—k+ 1)1 +2)7" forevery 2 > —1 and k € Z, .
The formal Taylor series of f about 0 is therefore
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Show that this series converges absolutely to (1 + x)? when |z| < 1 and diverges when
|z| > 1. (This formula is Newton’s extension of the binomial expansion to powers ¢ that
are real.)

. Show that for every ¢ > —1 one has
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while for every ¢ < —1 the above series diverges. (Hint: This is the case x = 1 for the
series in the previous problem.)

Let D C R. Let {f,}5>, be a sequence of functions such that each fr : D — R is
uniformly continuous over D. Let f : D — R such that f, — f uniformly over D.
Show that f is uniformly continuous.

Exercise 1 of Section 9.2 in the text.

Exercise 4 of Section 9.2 in the text.

Exercise 6 of Section 9.2 in the text.

Exercise 1 of Section 9.3 in the text.

Exercise 4 of Section 9.3 in the text.

Exercise 6 of Section 9.3 in the text.

. Exercise 3 of Section 9.4 in the text.
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Exercise 4 of Section 9.4 in the text.
Let g : [0,1] — R be continuous. Show that
1
lim [ na" 'g(z)dr = g(1).
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