
Importance sampling for rare events and some pathologies of the
exit problem

Carsten Hartmann (BTU Cottbus-Senftenberg)
Joint work with Lara Neureither (Cottbus), Omar Kebiri (Cottbus), and Lorenz

Richter (Berlin)

Brin Mathematics Research Center, 27th Feb – 3rd Mar 2023



Motivation: WW domain of a protein

? ?Protein folding

[Noé et al, PNAS, 2009]



Quantities involving random stopping times

Given a Markov process X = (Xt)t≥0 in Rd and first hitting times

τO = inf{t ≥ 0: Xt ∈ O} , O ∈ {A,B,C}

of some measurable subsets A,B,C ⊂ Rd , we want to estimate quantities, such as

▶ committor probabilities P(τB < τA)

▶ transition probabilities P(τC ≤ T )

▶ moment generating functions E[exp(−ατC )]
▶ mean first passage times E[τC ].



Illustrative example I: bistable system

▶ Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√
2ϵdBt .

▶ Standard estimator of MGF ψ = ψϵ

ψ̂N
ϵ =

1

N

N∑

i=1

e−ατ iC .

▶ Small noise asymptotics (Kramers)

lim
ϵ→0

ϵ logE[τC ] = ∆V .

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

4

5

6

7

x

V

−1.5 −1 −0.5 0 0.5 1 1.5
0

1000

2000

3000

4000

5000

6000

x

tim
e 

(n
s)

C!

[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



Illustrative example I, cont’d

▶ Relative error of the MC estimator

δϵ =

√
Var[ψ̂ϵ

N ]

E
[
ψ̂ϵ
N

]

▶ Varadhan’s large deviations principle

E
[
(ψ̂N

ϵ )
2
]
≫ (E

[
ψ̂N
ϵ

]
)2 , ϵ small.

▶ Unbounded relative error as ϵ→ 0

lim sup
ϵ→0

δϵ = ∞
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[Dupuis & Ellis, 1997]



Importance sampling

We may control the relative error by doing a change of measure, e.g.

E
[
e−ατC

]
= EQ

[
e−ατCL−1

]
= EQ

[
e−ατC−log L

]
, α > 0

assuming that the likelihood ratio L = dQ
dP > 0 exists.

Key observations

1. zero variance change of measure from P to Q = Q∗ exists, with likelihood ratio

L∗ = ec(α)−ατC , c(α) = − logE
[
e−ατC

]
.

2. variance reduction may not increase the likelihood of the rare event.
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Controlling the variance in rare event simulation (non-exhaustive list)

Importance sampling (invasive)

▶ adaptive importance sampling based on optimal control techniques
Glasserman & Wang; Dupuis & Wang; Vanden-Eijnden & Weare; H & Schütte; Spiliopoulos; Awad, Glynn & Rubinstein; ...

▶ KL divergence and cross-entropy minimisation
Rubinstein & Kroese; Zhang & H; Kappen & Ruiz; Nüsken & Richter; ...

▶ Mean squared error and work-normalised variance minimisation
Glynn & Whitt; Jourdain & Lelong; Su & Fu; Vázquez-Abad & Dufresne; ...

Splitting methods (non-invasive)

▶ RESTART, adaptive multilevel splitting
Villén-Altamirano & Villén-Altamirano; Cérou & Guyader; Aristoff, Lelièvre, Mayne & Teo; ...

▶ checkpointing, milestoning, transition interface sampling
Asmussen & Lipsky; Faradjian, Elber, West & Shalloway; Van Erp, Moroni & Bolhuis; Vanden-Eijnden & Venturoli; ...

▶ forward flux sampling, weighted ensemble method
Allen, Valeriani and Ten Wolde; Huber & Kim; ...
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A wish list

Let S(X ) ≥ 0 be a non-negative functional of the process X that is of the form

S(X ) =

∫ τ

0
f (Xs) ds + g(Xτ ) ,

for suitable functions f , g ≥ 0 and an a.s. finite stopping time τ , e.g.

▶ f = 0, g = 1B , τ = min{τA, τB}, such that E[S(X )] = P(τB < τA)

▶ f = 1, g = 0, τ = τC , such that E[S(X )] = E[τC ]
▶ f = 0, τ = min{τC ,T}, such that E[S(X )] = P(τC ≤ T )

Our aim is to find a change of measure from P to Q that both reduces the variance
and the average length of trajectories (and from which we can draw samples).



Certainty-equivalence principle

Instead of E[S(X )], we consider the certainty-equivalent expectation

γ = φ−1(E[φ(S(X ))])

where φ is a convex (strictly increasing or decreasing) function with inverse φ−1.

Two notable special cases are

▶ φ(s) = |s|p for p > 1, with the property

(
E
[
(S(X ))p

])1/p ≥ E
[
S(X )

]

▶ φ(s) = e−αs for α > 0, with the property

−α−1 logE
[
e−αS(X )

]
≤ E

[
S(X )

]
.

In both cases equality holds iff S is a.s. constant

[Whittle, Macroecon Dyn, 2002], [Fleming & Soner, 2006]



Certainty equivalence principle, cont’d

If φ(s) = |s|p for p ≥ 1, it holds

(E[(S(X ))p])1/p = sup

{
EQ

[
S(X )

(
dQ

dP

)−1/p
]
: Q ≪ P

}
.

where the supremum is attained for dQ∗

dP = Sp/E[Sp], provided that E[Sp] ∈ (0,∞).

If φ(s) = e−αs for α > 0, then

−α−1 logE
[
e−αS(X )

]
= inf

{
EQ [S ] + α−1 KL(Q|P) : Q ≪ P

}
,

where the infimum is attained for dQ∗

dP = ec(α)−αS if c(α) = − logE[e−αS ] is finite.

[Deuschl & Stroock, 1989], [Dai Pra et al, MCSS, 1996], [H & Schütte, JSTAT, 2012], [Schütte, Klus & H, Acta Numerica, 2023]
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Certainty equivalence principle, cont’d

Idea (case φ = exp):

▶ Assume that P ∼ Q, with log L ∈ L1(Q), and suppose that S is bounded.

▶ By Jensen’s inequality

−α−1 log

∫
e−αSdP = −α−1 log

∫
e−σS−log LdQ

≤
∫ (

S + α−1 log L
)
dQ

= EQ [S ] + α−1 KL(Q|P)

▶ Equality is attained iff S + α−1 log L is constant (Q-a.s.), i.e.

L =
dQ

dP
= ec−αS
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Set-up

We consider two diffusion process X and X u on [0,∞) governed by

dXs = b(Xs)ds + σ(Xs)dWs and dX u
s = bu(X u

s )ds + σ(X u
s )dWs

with
bu(x) = b(x) + σ(x)u

for any admissible control u, such that Girsanov’s Theorem holds

E[φ(S(X u))L−1] = E[φ(S(X ))]

where the likelihood ratio is given by

L = exp

(∫ τ

0
us · dWs −

1

2

∫ τ

0
|us |2ds

)
.



Zero-variance importance sampling I

Theorem (Zero-variance estimator for φ(s) = |s|)
Let h be the classical solution to the linear parabolic boundary value problem

(
∂

∂t
+

1

2
σσT : ∇2

x + b · ∇x

)
h = −f in D

h = g on ∂D+ ,

where the precise definitions of the domains D and ∂D+ depend on the problem at
hand. Then h(x , t) = E[S(X )|Xt = x ], and the controlled SDE with control

v∗s = (σ(X v
s ))

T∇x log h(X
v
s , s) , s ≥ t .

generates a zero variance change of measure Q∗.

[Awad, Glynn & Rubinstein, Math Oper Res, 2013]; cf. [Bardou, PhD Thesis, 2005]



Zero-variance importance sampling II

Theorem (Zero-variance estimator for φ(s) = exp(−αs))

Let u∗ be a minimiser of the cost functional

J(u) = E
[
S(X u) +

1

2α

∫ τ

t
|us |2 ds

]
(α > 0)

under the controlled dynamics

dX u
s = (b(X u

s ) + σ(X u
s )us)ds + σ(X u

s )dWs , X u
t = x .

The minimiser is unique and generates a zero variance change of measure Q∗.
Moreover

J(u∗) = −α−1 logE
[
e−αS(X )

∣∣Xt = x
]
.

[H & Schütte, JSTAT, 2012], [H et al, Entropy, 2017]



Superficial comparison between the two cases

▶ In the case φ = exp, the optimal control is again Markovian feedback control:

u∗s = −α(σ(X u
s ))

T∇xV (X u
s , s)

where V = minu J(u) is the value function of the optimal control problem.

▶ The last expression should be compared to the case when φ = id , viz.

v∗s = (σ(X v
s ))

T∇x log h(X
v
s , s)

▶ The stochastic control problem for φ = exp is of linear-quadratic type, for which
a variety of numerical methods exists (meshless, stochastic optimisation based,
etc.), whereas the case φ = id does not belong in any standard categoty.

▶ In both cases, we cannot draw directly from Q∗, because the optimal controls that
generate Q∗ = Q(u∗) or Q∗ = Q(v∗) depend on the quantity of interest.

[Graham & Talay, 2013], [Kebiri, Neureither & H, IHP Proc, 2019],[Schütte, Klus, H, Acta Numerica, 2023]



Example I: committor probabilities qAB(x) = Px(τB < τB)

▶ Underdamped LD dXs = −∇V (Xs)ds +
√
2dWt

▶ Optimally biased potential (“h-transform”) for
the case φ = id (i.e. f = 0, g = 1B , τ = τA∪B):

V ∗ = V + 2 log qAB

▶ Stochastic control formulation (α = 1,f = 0,
g = − log 1B): minimise the cost

J(u) = E
[
1

2

∫ τu

0
|us |2ds − log(1X u

τu
∈B)

]
,

subject to dX u
t = (ut −∇V (X u

t )) dt + dWt

(cf. Margot’s poster).

[H et al, Entropy, 2014], [H et al, Nonlinearity, 2016], [Gao et al, MMS, 2023]



Example II: exit time of a Brownian motion

▶ Let Xt = x + σWt with X0 = x ∈ (a, b), and set

τ = inf{t ≥ 0: Xt /∈ (a, b)}

▶ Mean first exit time h(x) = Ex [τ ] is given by

h(x) =
(b − x)(x − a)

σ2
, a ≤ x ≤ b .

▶ Moment-generating function ϕ(x) = Ex [e
−ατ ] is given by

ϕ(x) =
e−γx

(
eγ(a+b) + e2γx

)

eγa + eγb
, γ =

√
2α

σ2
, a ≤ x ≤ b .

▶ Relative error of crude MC diverges as σ → 0.



Example II, cont’d: controls

▶ Bias is singular at domain boundary:

∇V ∗(x) = ∇V (x) + 2
∇h(x)

h(x)
.

▶ P(τ = ∞) = 0, but Q(τ = ∞) = 1,
i.e., IS has infinite simulation time
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▶ Control seeks to minimise variance
and average simulation time:

min
u

Ex

[
τu +

1

2α

∫ τu

0
|us |2ds

]



Example III: butane in water (d = 16224)

Probability of making a gauche-trans transition before time T :

− logP(τ ≤ T ) = min
u

E
[
1

2

∫ τ∧T

0
|ut |2 dt − log 1∂C (X

u
τ∧T )

]
,

with τ denoting the first exit time from the gauche conformation “C”

3
2

1

4

4’

gauche

trans

Table 4.5: Results for butane dissolved in water: The probability P(⌧  T ) is calculated by the

important sampling procedure with control acting on the dihedral angle only; see the text for

more details. The column “Error” denotes the statistical uncertainty of estimating the probablity

P(⌧  T ). If the trajectories are statistically independent, the expected error is
p

Var/MIS ,

where MIS is the number of trajectories used. If the trajectories are not independent, the error

can be estimated by the block average method [9]. The meaning of the other columns are the same

as Tab. 4.2; here, the accelaration index has to be computed as I = VarMCMMC/(VarISMIS)

since the numbers of trajectories used in the IS and MC procedures are di↵erent.

T [ps] P(⌧  T ) Error Var Accel. I Traj. Usage

0.1 4.30 ⇥ 10�5 0.77 ⇥ 10�5 3.53 ⇥ 10�6 42.5 0.4%

0.2 1.21 ⇥ 10�3 0.11 ⇥ 10�3 2.50 ⇥ 10�4 26.0 5.4%

0.5 6.85 ⇥ 10�3 0.38 ⇥ 10�3 2.88 ⇥ 10�3 13.0 8.3%

1.0 1.74 ⇥ 10�2 0.08 ⇥ 10�2 1.21 ⇥ 10�2 7.0 12.3%

Table 4.6: Results for butane dissolved in water: Brute force / standard Monte Carlo computa-

tions of P(⌧  T ) without any important sampling.

T [ps] P(⌧  T ) Error Var Accel. Traj. Usage

0.1 9.00 ⇥ 10�5 3.00 ⇥ 10�5 9.00 ⇥ 10�5 1.0 0.009%

0.2 1.29 ⇥ 10�3 0.11 ⇥ 10�3 1.29 ⇥ 10�3 1.0 0.1%

0.5 7.41 ⇥ 10�3 0.27 ⇥ 10�3 7.36 ⇥ 10�3 1.0 0.7%

1.0 1.78 ⇥ 10�2 0.04 ⇥ 10�2 1.75 ⇥ 10�2 1.0 1.8%

molecules are removed. This is done because the vacuum simulation is much cheaper than the

in-water simulation, and practically, the control calculated in the corresponding vacuum systems

perform well enough in the in-water system, because we find, when tested, no further iteration is

needed to refine the control. In the vacuum system, we find probabilities P(⌧  T ) = 2.16⇥10�2,

8.66 ⇥ 10�3, 1.48 ⇥ 10�3 and 6.13 ⇥ 10�5 for T = 1.0, 0.5, 0.2 and 0.1 ps, respectively. These

values do not significantly di↵er from those of the dissolved system (see the second column of

Tab. 4.5). Noticing that butane is invariant with respect to transitional and rotational movement,

the above observations indicate that the transitional, rotational DOFs and the water structure

do not play a dominant role in the conformational change of butane, and the definition of control

only as a function as the dihedral angle, and the computation of control in the vacuum system

are reasonable choices.

The Fig. 4.5 the e↵ective dihedral angle energy is plotted being defined as the original

dihedral energy V�(�) plus the control Vctrl(�). We only show the e↵ective energy in the range

[40�, 150�], because the initial states of the trajectories are located in the range [40�, 80�], and the

trajectories are stopped when they reach � = 150�. For an easy comparison, all e↵ective energies

are shifted by a constant, so that they are of value zero at � = 150�. It clear that for smaller T

values, the control applied is stronger. The resulting probabilities P(⌧  T ) calculated by the

important sampling procedure are summarized in Tab. 4.5, which is consistent with Tab. 4.6 that

presents the brute force results (calculated from MMC = 100, 000 trajectoies). The consistency

16

IS of butane in a box of 900 water molecules (underdamped LD, SPC/E, GROMOS force field) using cross-entropy minimisation

[Zhang et al, SISC, 2014], [H et al, J Comp Dyn, 2014], [Zhang et al, PTRF, 2018], [H & Richter, arXiv:2102.09606, 2023]



Some remarks on the control formulation

▶ We have replaced a sampling problem by a variational problem that admits
many formulations (e.g. KL or cross-entropy minimisation, FBSDE, . . . ), e.g.

KL(Q|Q∗) = J(u)− J(u∗) ,

that give rise to workable numerical algorithms (cf. Weiqing’s talk).

▶ The stochastic control formulation of the sampling problem

−α−1 logE
[
e−αS(X )

]
= min

u
E
[
S(X u) +

1

2α

∫ τu

0
|us |2 ds

]

is consistent with large deviations (cf. Hugo’s and Zach’s talks).

▶ In many cases the optimal control becomes stationary (e.g. MFET, committors).
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Computation of the first moment

▶ Q∗ generated by solving the SOC problem is in general not a good change of
measure for other purposes, e.g. the mean, because

Var(τuL−1) ≥ Var(τ) and E[τu]Var(τuL−1) ≥ E[τ ]Var(τ)

▶ The LHS is the scaled cumulant-generating function of S ; for small α,

−α−1 logE
[
e−αS(X )

]
≈ E[S(X )]− α

2
Var(S(X )) ,

in particular
E[S(X )] = − lim

α↘0
α−1 logE

[
e−αS(X )

]

▶ However, for small α, the control becomes heavily penalised, and we cannot
expect the likelihood of the rare event to significantly increase.

[Badowski, PhD Thesis, 2016], [Schütte, Klus & H, Acta Numerica, 2023]
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From importance sampling to control variates

Theorem (Control variate limit)

Let X denote the solution to the uncontrolled SDE, and let X ∗ be the solution under
the optimal control u∗, with likelihood ratio L = L(u∗) > 0. Then, as α→ 0,

−α−1 logE
[
e−αS(X∗)L−1

]
→ E

[
S(X )−

∫ τ

0
Zs · dWs

]

where
Zs = (σ(Xs))

T∇xh(Xs , s)

with h being the classical solution to the linear boundary value problem associated with
the linear expectation for φ = id . Moreover,

Var

(
S(X ) +

∫ τ

0
Zs · dWs

)
= 0

[Schütte, Klus & H, Acta Numerica, 2023]; [H et al, in preparation]; cf. [H et al, Chaos, 2019]



Some remarks on the control variates limit

▶ Assuming sufficient regularity of the value function V and its spatial
derivative ∇xV , it holds that on any compact subset of Rd × [0,∞):

V → h and ∇xV → ∇xh .

▶ The Itô integral in

S(X )−
∫ τ

0
Zs · dWs

is a control variate that nullifies the variance of S . Note that Z depends on
∇xh, not on ∇x log h like the corresponding IS estimator.

▶ The control variate idea is not new (see, e.g., Graham’s and Talay’s book), but
the connection to stochastic optimal control allows for a generalisation to the case
when the underlying HJB equation has only a viscosity solution.

[Newton, SIMA, 1994], [Boyalval & Lelièvre, CMS, 2010], [Graham & Talay, 2013], [Roussel, PhD Thesis, 2018]



Example II, cont’d: exit time of a Brownian motion

▶ Exit of a 1-dimensional Brownian motion

Xt = x +Wt

from the interval I = (0, 1):

Ex [τ ] ≈ τ +

∫ τ

0
(2Xs − 1)dWs

▶ Comparison of crude MC and control variates
for n = 100 sample points

▶ Estimator robust under perturbations of
integrand (about 20% in sup-norm); observed
errors are likely due to EM discretisation.
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Take-home message

▶ Adaptive IS scheme based on exponential averages; resulting control problem
features short trajectories with minimum variance estimators.

▶ Direct IS approach for the mean may have issues for unbounded stopping times
that can lead to infinitely long simulation times after reweighting.

▶ Generally, IS may be sensitive to bad approximations of the control, especially
in high-dimensions; for random stopping times, there is a trade-off between the
average trajectory length and approximation error

δrel = O
(
eerror

2×E[τ (2u∗−u)]
)
.

▶ Control variates can cope with the somewhat pathological exit time case.

[Bickel, Li & Bengtsson, 2008], [Agapiou et al, Stat Sci, 2015], [H & Richter, arXiv:2102.09606, 2023]



Thank you for your attention!
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