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Motivation: WW domain of a protein

Protein folding

[Noé et al,

PNAS, 2009]



Quantities involving random stopping times

Given a Markov process X = (X;)t>0 in R? and first hitting times
To=inf{t>0: X, € O}, O€{AB,C}
of some measurable subsets A, B, C C R9, we want to estimate quantities, such as

» committor probabilities P(7g < 74)
» transition probabilities P(7¢ < T)
» moment generating functions Efexp(—a7¢)]

» mean first passage times E[r¢].



lllustrative example |: bistable system

» Overdamped Langevin equation
dXy = —VV(X;)dt + V2edB; .

» Standard estimator of MGF 1) = 1),
1Y :
=gt

» Small noise asymptotics (Kramers)

lim elogE[rc] = AV.
e—0

[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]
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lllustrative example |, cont'd

» Relative error of the MC estimator
\/Var[@f\,]

E[$5]
» Varadhan's large deviations principle

E[(&é\l)ﬂ > (Emé\l])z, € small.

e —

» Unbounded relative error as ¢ — 0

limsup de = o0
e—0

[Dupuis & Ellis, 1997]
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Importance sampling

We may control the relative error by doing a change of measure, e.g.
E[e—arc] — EQ [e—oz'rc L—l] _ EQ [e—aTc—log L] . a> 0

assuming that the likelihood ratio L = % > 0 exists.
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Importance sampling

We may control the relative error by doing a change of measure, e.g.
E[e—arc] — EQ [e—onc L—l] _ EQ [e—aTc—log L] . a> 0

assuming that the likelihood ratio L = % > 0 exists.

Key observations
1. zero variance change of measure from P to Q = Q* exists, with likelihood ratio
L* = ef@=omc - c(a) = —logE[e 27¢].

2. variance reduction may not increase the likelihood of the rare event.



Controlling the variance in rare event simulation (non-exhaustive list)

Importance sampling (invasive)
» adaptive importance sampling based on optimal control techniques
Glasserman & Wang; Dupuis & Wang; Vanden-Eijnden & Weare; H & Schiitte; Spiliopoulos; Awad, Glynn & Rubinstein; ...
» KL divergence and cross-entropy minimisation
Rubinstein & Kroese; Zhang & H; Kappen & Ruiz; Niisken & Richter; ...
» Mean squared error and work-normalised variance minimisation
Glynn & Whitt; Jourdain & Lelong; Su & Fu; Vazquez-Abad & Dufresne; ...
Splitting methods (non-invasive)
» RESTART, adaptive multilevel splitting
Villén-Altamirano & Villén-Altamirano; Cérou & Guyader; Aristoff, Leliévre, Mayne & Teo; ...
» checkpointing, milestoning, transition interface sampling

Asmussen & Lipsky; Faradjian, Elber, West & Shalloway; Van Erp, Moroni & Bolhuis; Vanden-Eijnden & Venturoli; ...

> forward flux sampling, weighted ensemble method

Allen, Valeriani and Ten Wolde; Huber & Kim; ...



Outline

A certainty-equivalence principle for importance sampling

Importance sampling of diffusions using tools from stochastic control theory

From importance sampling to control variates



A certainty-equivalence principle for importance sampling



A wish list

Let S(X) > 0 be a non-negative functional of the process X that is of the form

S(X) = /0 T F(X)ds + g (X,).

for suitable functions f,g > 0 and an a.s. finite stopping time 7, e.g.
» =0, g =1p, 7 = min{7a, 78}, such that E[S(X)] = P(7g < 7a)
» f=1,g=0, 7=17c, such that E[S(X)] = E[r¢]

» =0, 7=min{rc, T}, such that E[S(X)]|=P(rc < T)

Our aim is to find a change of measure from P to @ that both reduces the variance
and the average length of trajectories (and from which we can draw samples).



Certainty-equivalence principle

Instead of E[S(X)], we consider the certainty-equivalent expectation

v =9 HElp(S(X))])
where ¢ is a convex (strictly increasing or decreasing) function with inverse ¢ 1.

Two notable special cases are

» o(s) =|s|P for p > 1, with the property
(E[(S(X)P)"P = E[S(X)]
> o(s) = e for o > 0, with the property
—atogE[e X)) < E[S(X)] .

In both cases equality holds iff S is a.s. constant

[Whittle, Macroecon Dyn, 2002], [Fleming & Soner, 2006]



Certainty equivalence principle, cont'd

If o(s) = |s|P for p > 1, it holds

(E[(S(X))P)"P = sup {Eo

S(X) (Zg) _1/,,] HOR P} .

where the supremum is attained for dﬁ; = SP/E[SP], provided that E[SP] € (0, 00).




Certainty equivalence principle, cont'd

If o(s) = |s|P for p > 1, it holds

(E[(S(X))P)"P = sup {Eo

S(X) (Zg) _1/,,] HOR P} .

where the supremum is attained for dﬁ; = SP/E[SP], provided that E[SP] € (0, 00).

If o(s) = e~ for « > 0, then

—a"togE[e )] = inf {E[S] + ot KL(Q|P): Q < P},

where the infimum is attained for dQ = (D=5 if ¢(a) = — log E[e~*°] is finite.

[Deuschl & Stroock, 1989], [Dai Pra et al, MCSS, 1996], [H & Schiitte, JSTAT, 2012], [Schiitte, Klus & H, Acta Numerica, 2023]
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Idea (case ¢ = exp):
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Certainty equivalence principle, cont'd

Idea (case ¢ = exp):
» Assume that P ~ Q, with log L € L}(Q), and suppose that S is bounded.
> By Jensen's inequality

—a 1 |og/e—6!5dp =—a 1 |og/e—aS—IOngQ

< / (S+atlogl)dQ
=Eq[S] + a1 KL(Q|P)
» Equality is attained iff S + o~ llog L is constant (Q-a.s.), i.e.

dQ c—aS

inz
dP






Set-up
We consider two diffusion process X and X" on [0, c0) governed by
dXs = b(Xs)ds + o(Xs)dWs and  dX! = b*(XY)ds + o(X)dWs

with
bY(x) = b(x) + o(x)u

for any admissible control u, such that Girsanov’s Theorem holds
E[p(S(X"))L™'] = E[p(S(X))]

where the likelihood ratio is given by

T 1 T
L =exp (/ us-dWs—/ u5|2ds> .
0 2 Jo



Zero-variance importance sampling |

Theorem (Zero-variance estimator for (s) = |s|)

Let h be the classical solution to the linear parabolic boundary value problem

3+300T:v§+b-vx h=—f in D
ot ' 2

h=g on OD',

where the precise definitions of the domains D and D™ depend on the problem at
hand. Then h(x, t) = E[S(X)|X;: = x], and the controlled SDE with control

vi=(c(X)) Vylogh(X!,s), s>t.
generates a zero variance change of measure Q*.

[Awad, Glynn & Rubinstein, Math Oper Res, 2013]; cf. [Bardou, PhD Thesis, 2005]



Zero-variance importance sampling |

Theorem (Zero-variance estimator for p(s) = exp(—as))

Let u* be a minimiser of the cost functional
u 1 T 2
J(w)=E|S(X")+ — [ |us|*ds| (a>0)
2a J,
under the controlled dynamics
dX{ = (b(X) + o(X)us)ds + o (X )dWs, X =x.
The minimiser is unique and generates a zero variance change of measure Q*.

Moreover
J(u*) = —a"tlogE[e ) | X, = x] .

[H & Schiitte, JSTAT, 2012], [H et al, Entropy, 2017]



Superficial comparison between the two cases

P In the case ¢ = exp, the optimal control is again Markovian feedback control:
up = —a(o(X)TVAV(XY)s)

where V' = min, J(u) is the value function of the optimal control problem.

» The last expression should be compared to the case when ¢ = id, viz.
v = (0(X{)) " Vxlog h(X{, )

» The stochastic control problem for ¢ = exp is of linear-quadratic type, for which
a variety of numerical methods exists (meshless, stochastic optimisation based,
etc.), whereas the case ¢ = id does not belong in any standard categoty.

» In both cases, we cannot draw directly from Q*, because the optimal controls that
generate Q* = Q(u*) or Q* = Q(v*) depend on the quantity of interest.

[Graham & Talay, 2013], [Kebiri, Neureither & H, IHP Proc, 2019], [Schiitte, Klus, H, Acta Numerica, 2023]



Example |: committor probabilities gag(x) = Px(78 < 75)

» Underdamped LD dX; = —V V/(X;)ds + v2dW,;

» Optimally biased potential (“h-transform™) for ?
the case p =id (i.e. f=0,g=1p, 7 =TauB): | /
J
V*:V+2|quAB 1\
» Stochastic control formulation (o = 1,f =0, oy
g = —log1g): minimise the cost 3

u

1 T
J(u) = E[2/ |us|?ds — Iog(lXTuUGB)] )
0

subject to dX/ = (ur — VV(X¥)) dt + dW,
(cf. Margot's poster).

[H et al, Entropy, 2014], [H et al, Nonlinearity, 2016], [Gao et al, MMS, 2023]



Example Il: exit time of a Brownian motion

» Let X; = x + oW, with Xp = x € (a, b), and set
T=inf{t >0: X ¢ (a,b)}
» Mean first exit time h(x) = E[7] is given by

_ (b—x)(x—a)’

> a<x<hb.
g

h(x)
» Moment-generating function ¢(x) = E,[e 7] is given by

- +b 2
, Y=

¢(x) =

e’ 4 b

» Relative error of crude MC diverges as ¢ — 0.



Example I, cont'd: controls

» Bias is singular at domain boundary:

15
Vh(x) :
V\/*X =VV(x —|—2 . —o=01
¥ ) h(x) 505 o001
» P(r=00)=0, but Q(1r =00) =1, g
i.e., IS has infinite simulation time e /
£
20 -1.5
—naive IS (no regularisation) 0 0.2 0.4 0.6 0.8 1
15 [M] X

» Control seeks to minimise variance
and average simulation time:

control

u

1 T
min E, [T“ + / |u5]2d5]
u 2a 0




Example IlI: butane in water (d = 16224)

Probability of making a gauche-trans transition before time T:
1 TAT
—logP(t < T)= min]E[z/ lus|? dt —log 1oc(X )|
v 0

with 7 denoting the first exit time from the gauche conformation “C”

gauche
4 R T [ps] P(r <T) Error Var Accel.
( /\y 0.1 430x107°  0.77x107° 353 x 1070 425
&,\u 1 0.2 1211073 0.11x107%  2.50 x 10~* 26.0
IS 3 2 0.5 6.85x 1073 0.38 x 1073 2.88 x 1072 13.0
1.0 1.74x 1072 0.08 x 1072 1.21 x 1072 7.0

trans

IS of butane in a box of 900 water molecules (underdamped LD, SPC/E, GROMOS force field) using cross-entropy minimisation

[Zhang et al, SISC, 2014], [H et al, J Comp Dyn, 2014], [Zhang et al, PTRF, 2018], [H & Richter, arXiv:2102.09606, 2023]



Some remarks on the control formulation

» We have replaced a sampling problem by a variational problem that admits
many formulations (e.g. KL or cross-entropy minimisation, FBSDE, ...), e.g.

KL(QIQ™) = J(u) — J(v"),

that give rise to workable numerical algorithms (cf. Weiqing's talk).
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is consistent with large deviations (cf. Hugo's and Zach's talks).



Some remarks on the control formulation

» We have replaced a sampling problem by a variational problem that admits
many formulations (e.g. KL or cross-entropy minimisation, FBSDE, ...), e.g.

KL(QIQ™) = J(u) — J(v"),

that give rise to workable numerical algorithms (cf. Weiqing's talk).
» The stochastic control formulation of the sampling problem
1 [
—a ! IogE[ef‘ls(X)] =minE [S(X”) + — / |us|? ds]
u 2a 0
is consistent with large deviations (cf. Hugo's and Zach's talks).

» In many cases the optimal control becomes stationary (e.g. MFET, committors).



From importance sampling to control variates



Computation of the first moment

> Q" generated by solving the SOC problem is in general not a good change of
measure for other purposes, e.g. the mean, because

Var(rL™") > Var(r) and E[r"] Var(7“L™") = E[r] Var(r)

[Badowski, PhD Thesis, 2016], [Schiitte, Klus & H, Acta Numerica, 2023]
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> Q" generated by solving the SOC problem is in general not a good change of
measure for other purposes, e.g. the mean, because
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Computation of the first moment

> Q" generated by solving the SOC problem is in general not a good change of
measure for other purposes, e.g. the mean, because
Var(rYL™Y) > Var(r) and E[rY] Var(r“L™1) > E[r] Var(7)
» The LHS is the scaled cumulant-generating function of S; for small «,

—atlog E[e=5X)] ~ E[S(X)] — % Var(S(X)),

in particular
H - —aS(X
E[S(X)] = _olél{?oa ! logE e ( )}

» However, for small «, the control becomes heavily penalised, and we cannot
expect the likelihood of the rare event to significantly increase.

[Badowski, PhD Thesis, 2016], [Schiitte, Klus & H, Acta Numerica, 2023]



From importance sampling to control variates

Theorem (Control variate limit)

Let X denote the solution to the uncontrolled SDE, and let X* be the solution under
the optimal control u*, with likelihood ratio L = L(u*) > 0. Then, as a — 0,

—a tlogE[em X ~1] —>E[S(X)—/ ZS~dW5]
0

where
Zs = (0(Xs)) T Vih(Xs, 5)

with h being the classical solution to the linear boundary value problem associated with
the linear expectation for ¢ = id. Moreover,

Var <5(X) +/OT Z, - dWs> =0

[Schiitte, Klus & H, Acta Numerica, 2023]; [H et al, in preparation]; cf. [H et al, Chaos, 2019]



Some remarks on the control variates limit

> Assuming sufficient regularity of the value function V and its spatial
derivative V, V/, it holds that on any compact subset of RY x [0, 00):

V.= h and V,V = V,h.

> The It6 integral in
-
S(X) —/ Zs - dWs
0

is a control variate that nullifies the variance of S. Note that Z depends on
Vxh, not on V, log h like the corresponding IS estimator.

» The control variate idea is not new (see, e.g., Graham's and Talay's book), but
the connection to stochastic optimal control allows for a generalisation to the case
when the underlying HJB equation has only a viscosity solution.

[Newton, SIMA, 1994], [Boyalval & Leliévre, CMS, 2010], [Graham & Talay, 2013], [Roussel, PhD Thesis, 2018]



Example I, cont'd: exit time of a Brownian

» Exit of a 1-dimensional Brownian motion
Xt =X+ Wt

from the interval | = (0,1):
El[r] ~ 7+ / (2X; — 1)dW,
0

» Comparison of crude MC and control variates
for n = 100 sample points

» Estimator robust under perturbations of
integrand (about 20% in sup-norm); observed
errors are likely due to EM discretisation.
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Take-home message

» Adaptive IS scheme based on exponential averages; resulting control problem
features short trajectories with minimum variance estimators.

» Direct IS approach for the mean may have issues for unbounded stopping times
that can lead to infinitely long simulation times after reweighting.

» Generally, IS may be sensitive to bad approximations of the control, especially
in high-dimensions; for random stopping times, there is a trade-off between the
average trajectory length and approximation error

5 | = O<eerror2xE[T(2"*"’)]>
rel = .

» Control variates can cope with the somewhat pathological exit time case.

[Bickel, Li & Bengtsson, 2008], [Agapiou et al, Stat Sci, 2015], [H & Richter, arXiv:2102.09606, 2023]



Thank you for your attention!
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