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Switching Forces and Thermal Noise

Biological systems under the influence of microscale active agents such as

proteins can lead to models with switching forces as agents shift between
different states
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Spatiotemporal organization of genes

nucleolus of budding yeast
Condensin protein also plays role in spatial segregation (clusters)
chromatin arrangement in cell nucleus

Mechanism causing structure within the
“bowl of wet noodles”
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Polymer Chromosome Model

Chromatin motion obeys the dynamics of a polymer bead-spring chain
bead = 5 kilo base pairs of DNA 32 tethered chains
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Effective Temperature and Landscape

just viewing the one chain that has the added stochastic binding
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Behaves as if there is an energy landscape with thermal noise
stochastic binding -> effective landscape

Walker B, et al. (2019) PLoS Comput Biol 15(8): e1007124



Metastability 6

Thermal Equilibrium overdamped Langevin Equation
w(X) =z tem VXS dX = —VU(X)dt + V2edW
€ — ]CBT

potential function U (X) with energy barrier AE

Metastability: long-lived trajectories in localized
e < AE regions (near energy minimizing states) with rare
transitions between these states
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Quasipotential 7

The non stochastic forces are gradient, but the presence of
stochastically-switching binding forces suggests looking for a
quasipotential ® e e !
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Account for ion channel noise in spiking

neuron model W)
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Other piecewise deterministic Markov processes like molecular motors
Bressloff (2021) J Stat Mech: Thry Exp, 043207

Review of methods for non-gradient forces
Zhou, Aliya, Aurell, Huang (2012) J R Soc Interface, 9, 77, 3539-53



Minimal 3-bead model, no chain 8

SDE for bead position excluded volume as before

S
= (fi+ fhv + ftona) dt + V2edW = 03 (X)dt + v 2edW
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Mathematical Framework

joint probability function for continuous variable x and discrete variable s

ps(x,t) = p(a,t|sy = s)P(sy =) fors=1,2,...n

coupled Fokker-Planck equations for steady state

O:—Za—%[vips]JreZW[ S]JFE_B;;SSkpk

Fokker-Planck for each state coupling between the states

WKB-like ansatz for the effective thermal equilibrium

pala) =) exp (W (o))
s=1...n

W(CIZ‘) “quasi-potential” takes the role of V(x) in thermal equilibrium
independent of the state s

superimposes the different states
(normally no pre-exponential term at lowest order in WKB)



Mathematical Framework
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5 > 1 0, (%) : S7 = (0 Eliminate Markov Chain noise

M

O (l) : (VW)Z — Z U,f Ts standard time-averaged force

€
S

O (%) . M(:zj, VW)F(m) =0 Both noise sources combine
b=1

M matrix combines drift, diffusion, and switching matrix S

b <1 The system equilibrates within each state s

Effective equilibrium across the states on much longer time-scale



Quasipotential
B=1 M(z,VW)=D(VW)+ Az, VW) + aS(z) = 0

T AW
DSS = — Diagonal diffusion matrix
c’?:z:z-

1=1
™m
LOW
ASS — E UV, Diagonal advection matrix
— O,
1=

Largest eigenvalue of matrix M is zero
Define largest eigenvalue to be the Hamiltonian, leads to Hamilton-Jacobi equation

H(x, VW (z)) =0 (p=VW)

=> most probable path ¢ parallel to gradient of quasipotential
=> log mean transition time proportional to quasipotential barrier height

V ’H(gj p) ‘ H @ additional constraint to uniquely define W,
b ’ p=VW(z) ds  written in terms of the most probable path



Predicting Probable States 12

Fixed points of the deterministic dynamics (takinge — 0 ) P Zvi rpfort=1...m
k=1
are solutions to H(x, O) =0 r —null S irk —1

k=1

Quasi-potential
Saddle Points

(and 2 other
permutations)

Quasi-potential

Minimizers
2-bead cluster 3-bead cluster



String Method (Most Probable Path)

Gradient system

dX = —VU(X)dt + V2edW

The energy-minimizing path is the MPP

and is everywhere parallel to the gradient.
To find, evolve

String evolution

Orp(a,t) = =VU(d(a; 1))

gb the path

(x  arc length
Numerically integrate

k+1
P =

h time step size

k _ k . number of images along
J ¢J hVU(¢J) g=1... N the string

After each step, interpolate the images along the string

W. E, W. Ren, and E. Vanden-Eijnden, (2007) “Simplified and improved string method for computing
the minimum energy paths in barrier-crossing events,” J Chem Phys, 126, p. 164103



Numerical Challenges

d
¢(S) Most probable path (climbing string method) d_¢ ‘ ‘VW
S

H(x, VW (x)) =0

dg

Vp%(l', p) ’p:VW(x) H %

1) Solve for VWV along path by solving above two equation 2) Update path based on \/ W/

In practice, Newton’s method for 1) often fails to converge due to initial guess

Fallback method: decouple the two equations

Move initial guess to try and maximize dot product of tangent to path with gradient

Then just solve H(x, VW (z)) =0

Also noticed need for smaller time step h when using more images along the string



Schematic of Transitions

Quasipotential theory valid for transitions from the minimum

Potential transitions between saddle points shown as dashed lines

(Simple application of Hydra String
Method developed with Chris Moakler .
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Example Transitions

quasi-potential
minimum
<> transition state

Predict the
existence of 3-

bead and 2-bead
stable clusters

Lifetime given by

T~ 6AVV/G

Simultaneously solve for quasi-potential and transition path
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Monte Carlo Simulations

A “Deterministic” average: found by
a — Quasipotential - eliminating switching noise
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Multiple Paths

Recall there are two pathways out of
the 3-bead cluster state.

o
o
While the lower energy barrier is o

preferred, we have not weighted both
pathways to predict the MFPT

Furthermore, we have not guaranteed construction of a global
equilibrium-like distribution, just a local distribution around a minimum.

Further investigation needed to compute likelihood to find system in a
given cluster state.



Effective Barrier Explains Metastability

relative strength of
binding noise vs. thermal noise:
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Competing Timescales

Quasi-potential framework explains metastable clusters Clus‘.ce.rs
no mixing
switching noise to zero first, naive time- "
o > 1 : N T
averaged force controls energy barrier
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12
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- switching fast enough that its hard to mixing
a1 diffuse away while force off, creating
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- switching not so fast that there is a r .
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mixing
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Summary

Addition of fast transient crosslinking push the polymer model of
chromosome dynamics out of equilibrium, yet at the right
timescale produced metastable structure

Metastable clusters shown to emerge from a quasi-potential capturing
the interplay of stochastically-switching forces and thermal noise

Walker B, KAN (2022) Numerical computation of effective thermal
equilibrium in Stochastically Switching Langevin Systems
Phys. Rev. E 105:064113
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Add Geometry + Correlations
Set of N spins, o; € R® ||o|| =1

Proposal with geometry:

n 1 n Project noise into tangent |
vV, = P n\ W, |
’ i (wi') plane for each spin € V'
. , .
ol = i+ EVi Proposed spins projected g;
‘ |o; + evi||  back onto sphere e
I

1.0

Correlations between
s hoise vectors:
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Continuous Time Limit

cross-product 0 —Z Y ( o1y O ... 0
o, x dW P=|z 0 =X o 0 o094 ... O
-Y X 0 J : ST
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cross-cross product T_X2 _XVY _XZ
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white noise: either projection results in sampling the Gibbs distribution

ON .
dg = PPTANGdL — ?§dt + /28~ NPAW

colored noise: only cross-projection results in sampling the Gibbs distribution

Tr(C )
3 :PC—]\][VPTAN§dt _9p31 r(](VjN) §dt ++/28-1PCY AW

Wrong accept/reject probability to guarantee sampling the
Warning! Gibbs distribution because the proposal is no longer

symmetric: coloring projected noise is not equivalent to
projecting colored noise




Continuous Time Limit

cross-product 0 —Z Y (O’l’q 0o ... 0
o; x dW; Pp=|2Z2 0 =X o 0 o094 ... O
\ 0 0 ... ong/
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white noise: either projection results in sampling the Gibbs distribution

ON .
dg = PPTANGdL — ?§dt + /28~ NPAW

colored noise: only cross-projection results in sampling the Gibbs distribution
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