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Abstract Enhanced sampling algorithms have emerged as powerful methods to extend the utility
of molecular dynamics simulations and allow the sampling of larger portions of the configuration
space of complex systems in a given amount of simulation time. This review aims to present the
unifying principles of and differences between many of the computational methods currently used
for enhanced sampling in molecular simulations of biomolecules, soft matter and molecular crys-
tals. In fact, despite the apparent abundance and divergence of such methods, the principles at
their core can be boiled down to a relatively limited number of statistical and physical concepts. To
enable comparisons, the various methods are introduced using similar terminology and notation.
We then illustrate in which ways many different methods combine features of a relatively small
number of the same enhanced sampling concepts. This review is intended for scientists with an
understanding of the basics of molecular dynamics simulations and statistical physics who want
a deeper understanding of the ideas that underlie various enhanced sampling methods and the
relationships between them. This living review is intended to be updated to continue to reflect the
wealth of sampling methods as they continue to emerge in the literature.
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Sampling rare event energy landscapes via birth-death
augmented dynamics
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A common problem in simulations of complex systems is the
separation of metastable states by high barriers that hinder
transitions between the states. The authors address this by
adapting a sampling algorithm that includes a birth-death
process, and show that this scheme can efficiently sample

energy landscapes with such barriers.
Show Abstract +
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Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion
of a particle in an energy landscape U(x): RY — R that we want to sample

D > 0: diffusion coefficient

dx(1) = — DAV U(x(1) dt + /2D dW(r) p=1kgT

W standard Brownian motion on R

x(0) € R : initial conditions
The solution X = (x(1))( is @ Markov process that has a unique stationary (Boltzmann) distribution

(x) = 7 le=PV™) Normalization constant Z generally unknown

Can simulate in practice using the Euler-Maruyama algorithm

Gives a trajectory that samples z(x) (given infinite time)

potential energy
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Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion
of a particle in an energy landscape U(x): RY — R that we want to sample

D > 0: diffusion coefficient

dx(1) = — DAV U(x(1) dt + /2D dW(r) p=1kgT

W standard Brownian motion on R

x(0) € R : initial conditions
The solution X = (x(1))( is @ Markov process that has a unique stationary (Boltzmann) distribution

(x) = 7 le=PV™) Normalization constant Z generally unknown

Can simulate in practice using the Euler-Maruyama algorithm

Gives a trajectory that samples z(x) (given infinite time)

Can use multiple independent simulations to improve sampling statistics

potential energy



Fokker-Planck Equation

The overdamped Langevin equation is the probabilistic counterpart of the Fokker-Planck equation
that describes the time evolution of probability density p,(x)

0, px) = L¥p(x)  with  L*p(x) =DV - (Vp,(x)+ fp,x)VU(X))

With the distribution zz(x) as the stationary solution, L*z(x) = 0



Fokker-Planck Equation

The overdamped Langevin equation is the probabilistic counterpart of the Fokker-Planck equation
that describes the time evolution of probability density p,(x)

0, px) = L¥p(x)  with  L*p(x) =DV - (Vp,(x)+ fp,x)VU(X))

With the distribution zz(x) as the stationary solution, L*z(x) = 0

Particle picture to solve the Fokker-Planck: consider an ensemble of N independent Langevin dynamics simulations

- . L NN z :
Empirical particle distribution My ()C) AT 5xk(t) Smoothened particle distribution p =
N Desired equilibrium distribution 7

Smoothed estimate by employing a convolution with a
(Gaussian) kernel, i.e., kernel density estimation

1 & |

N —_
K ) = - 3 K= x0) /\/
N
k
O

Should approximate the stationary  1ijm K * ﬂzN ~ 7(x)
distribution in the long time limit t— 00

Probability

Position



Ad-Hoc Birth-Death Events

Can we do better?

ldea: Improve the agreement with the desired equilibrium distribution by killing and duplicating particle (i.e. simulations)

Smoothened particle distribution p == :
Desired equilibrium distribution m Kill

red
particle \
>
duplicate
green
@ @ o

Probability

particle

Position Position

We address here how we can do this in a theoretically sound way

Original idea from [1], but an issue with obtaining correct sampling that we fix in [2]

[1] Lu, Lu, and Nolen, arXiv:1905.09863
2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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We address here how we can do this in a theoret
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Fokker-Planck-

Sirth-

Death

—quation

Consider a non-linear and non-local Fokker-Planck-Birth-Death (FP-BD) equation [1]

al‘ pt('x) — L*pt('x) T Taajz'(pt) pt

Where we have added a so-called birth-death term a_(p,)

a][(pt) — log

pAx)

77(X)

o

pAx)

n(y)

) p(x) dy

7, > (: birth-death rate with units 1/time, can assume 7, = 1

First term: Increase p,(x) at x if smaller than m(x), decrease if larger

Second term: Preserves normalization

[1] Lu, Lu, and Nolen, arXiv:1905.09863
2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)



Fokker-Planck-Birth-Death Equation

Consider a non-linear and non-local Fokker-Planck-Birth-Death (FP-BD) equation [1]
d, px) = L*p[x) — z,0.(p,) p, 7, > (: birth-death rate with units 1/time, can assume 7, = 1

Where we have added a so-called birth-death term a_(p,)

Px) Px) First term: Increase p (x) at x if smaller than z(x), decrease if larger
a,(p,) = log Jlog p(x)dy

7(x) (y) Second term: Preserves normalization

Where a () = 0 so m(x) remains the stationary solution,
.e., adding the birth-death terms does not change the equilibrium TR

The effect of the birth-death term is to allow for non-local moves
of the probability density (with normalization preserved)

S
—
>

b
—

Can be shown that the speed of convergence is
iIndependent of barrier heights

Now, the question is, how can we solve this equation? Can we 1] Lu, Lu, and Nolen, arx
. . . : 1] Lu, Lu, and Nolen, arXiv:1905.09863
_ ? - ’
define a probabilistic counterpart to this FB-BD equation® 2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)



Interacting Particle Picture of the Fokker-Planck-Birth-Death Equation

1 &
Assume N particles with positions x;(?), ..., xp(f) € R4 at time ¢ > 0 and empirical particle distribution ,utN (x) = N Z 5xk(t)
k

Replace the birth-death term a_(p,) with a smoothened approximation A_(p;)

az pt(x) — L*pz(x) — TaAn(pz) Pt

Leads to the following dynamics:

Each particle diffuses independently according to the overdamped Langevin dynamics

Each particle has an independent exponential clock that strikes with rate 7, | A(,utN )(x(1)) |

. A(,utN )(x(2)) > O: kil particle i (and duplicate random selected other)
total particle number N is preserved

. A(/,ttN )(x(#)) < 0, duplicate particle i (and kill random selected other)

Thus, this birth-death dynamics will help distribute the particles according to z(x) and speed up convergence of ,utN (x) to m(x)

We are left with selecting the smoothened approximation A_(p,)

[1] Lu, Lu, and Nolen, arXiv:1905.09863
2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Interacting Particle Picture of the Fokker-Planck-Birth-Death-Equation

Few possible choices for the smoothened approximation A_(p,)

All feature a convolution with a Gaussian kernel K(x) with covariance matrix 2

exp . x € RY

K* f(x) = JK(x - W f(y)dy with K(x) = EYEhSIIE X 5

The original choice from [1]

A(u) = log

K* p, (x) K*u )\ » | o
log My (y) dy Compare the smoothed particle density with z(x)

77(X) 7(y)

But, one crucial shortcoming, A%(r) # 0, so z(x) is not a stationary solution to approximate FP-BD equation
In practice: converges to the wrong distribution

Could solve this by adding a correction term [2]: A*(F) = AY(f) — AY(x), but not convenient for mathematical analysis

[1] Lu, Lu, and Nolen, arXiv:1905.09863

2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)



11

Interacting Particle Picture of the Fokker-Planck-Birth-Death-Equation

Few possible choices for the smoothened approximation A_(p,)

All feature a convolution with a Gaussian kernel K(x) with covariance matrix 2

x X7y p
eXPp , Xx € R,

K* f(x) = JK(x — V() dy with K(x) =
Our choice, a multiplicative term (new contribution introduced in [2])

A™(u,") = log uy (v) dy

K* i (x) Jlo K* ()
K * 7(x) > K * n(y)

Cleary, A"™(7) =0

Work with A™(u™), unless stated otherwise

(27)d12| |12 A 9

Compare the smoothed particle density with K * z(x),
the convoluted m(x)

[1] Lu, Lu, and Nolen, arXiv:1905.09863
2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Interacting Particle Picture: Mathematical Properties

If we formally take 2 = 0 and interpret K(x) as a Dirac delta function
—> all approximation A°(x), A24(xr), and A™ (1) correspond to the exact term a ()

Can proof that empirical particle distribution //ttN (x) convergences weakly to the solution p,(x)

of the approximate Fokker-Planck-Birth-Death equation when N — oo

Gives proper meaning to the idea that this interacting particle system is the
probabilistic counter-part of the Fokker-Planck-Birth-Death equation.

If we increase the magnitude of the Gaussian covariance matrix, | 2| — oo, we
turn off the effect of the birth-death term

See [1] and [2] for further mathematical properties and proofs

[1] Lu, Lu, and Nolen, arXiv:1905.09863
2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)



Interacting Particle Picture: Implementation

Can write out the explicit birth-death term in the particle-based picture

I | 1
mu/,, N _ o _ . b L B B .
A™ () = log | 2 K(x; =) | = log(K * n(x)) = — D |log ~ 2 K(x, — x) | — log(K * 2(x))
J=1 k=1 j=1
Employ diagonal Gaussian kernels with bandwidths ¢ = (01, cees ad) Note: do not need to know the normalization of z(x)
, 2
K(x) : Zd: <
X) = exp _
d
ezl | Yy i=1 \/551'

Duplicate/Kill particles with probability
A; := A™(uV)(x;) Langevin time step
qdi = 1 — CXp (_Ta‘Ai‘MH ) M : Number of Langevin steps between attempting birth/death moves

@ : Langevin time step



Interacting Particle Picture: Implementation

Algorithm 1: Birth-death augmented Langevin fort«+ 1to J do
dynamics update X and P by Langevin solver L(X, P,U,6)
Input: if (¢t mod M) =0 then

e Potential U (and temperature T') corresponding Calculate A for all particles N

to the equilibrium distribution 7 Draw N independent random numbers {r;};=;
uniformly from [0, 1)
Make list  of indices ¢ for which

| . ri < q=1—exp (—Ta|Ai|M9)
e Calculation rule for smoothed birth-death term Shuffle ¢ randomly

A using Gaussian kernel K with bandwidths o

e Langevin solver L(X, P,U, ) with corresponding
parameters

foreach i € ( ®“ do
e Rate factor 7, Select particle 7 uniformly from all other

e Langevin time step 6 particles

if A; > 0 then

i i Ti < Tj; Pi < Dj

e Number of Langevin steps between birth-death else if A, < 0 then
attempts M ’

e Number of Langevin steps J

N Tj < Tiy; Pj < Dsi
e N particles with initial positions X = {z;};Z1 end if
and momenta P = {p;}i,

end foreach
Output: end if

e Set of particles whose empirical measure end for

approximates

Implemented in a Python code
Available on Github: github.com/bpampel/bdld



http://github.com/bpampel/bdld
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Example of Behavior

Without birth/death moves (i.e., pure Langevin dynamics)

potential energy

N = 100 particles in both cases, only show two

With birth/death moves

potential energy
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Example of Behavior

Without birth/death moves (i.e., pure Langevin dynamics)

potential energy

N = 100 particles in both cases, only show two

With birth/death moves

potential energy



Applications

Will explore the performance of this birth/death augmented Langevin dynamics scheme and the impact
of various parameters by using prototypical rare event energy landscapes

Start with a two state model with a moderately high barrier (~ 4 kgT)

Energy Landscape U(x) [ksT]

-2 -1 0 1 2
Position x
Unless otherwise stated
Employ N = 100 particles
16 Euler-Maruyama algorithm to solve the overdamped Langevin dynamics

M = 100 Langevin steps between trying birth/death moves
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Energy landscape U(x) [kgT]

Choice of the Approximation

Original approximation from [1]

Multiplicative approximation from our work [2]

K* p"(x) 1 () * 1] (x) K* ) (y)
Ay = 1o f —Jl f A™(uN) = 1o f —Jlo f Ny)d
(b") = log — = ( 0) pe (v) dy (4;") = log K 700 AWy A (v) dy
8 | | | ' | ' | ' |
IR KN
:_0.05 - : ,—O—Og —_——: /\
6 I 10.20 | — 0.20 |
0.35 0.35 /=\
:0.50 — : / :0.50 — :
_ ref — |
4 |
2 / \/
O 1 ] ] 1 ] | ] ] 1 ]
-2 1 1 2 -2 1 1 2

Original approximation leads to incorrect sampling and results as expected

100 Particles - overdamped Langevin Dynamics
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Choice of the Approximation

4.8 — _O'_ E— _| ' 1 ' 1 ' ? T 1 y 1 ==
| Qmu + | o=
AT N | 4+ +
+
E 4.6 [ s + -
” , + *
S .
O :
T 44} 5 _
Q :
G _ .
= :
42 '@ E -
. | . | . | . i . | . | .

0 0.1 0.2 0.3 0.4 0.5 0.6
Bandwidth o

Original approximation leads to under-sampling of barrier region and too high barrier estimates

Obtain good sampling with new multiplicative birth/death term Am“(,utN ) as long as above a certain critical bandwidth

100 Particles - overdamped Langevin Dynamics
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Energy Landscape U(x) [ksT]

Speed of

100 Particles

—quilibration

o Start far from equilibrium with 10 in left state and 90 in right state
e Should be 63 in left state and 37 in right state on average in equilibrium

"l | Px€B;)~0.63 P(x€ By ~0.37

-2 —1 0 1 2
Position x

Fraction of particles in the Left state

©
(&)
I

\ .

/ ‘
02 B '. =
V.
¢
' - A%, 0=0.2 =— AM™ =02 - no B-D = = |
A% 0=05+ -+ A™, 0=05‘+=- |
O | | |

0 2000 4000 6000 8000

Number of Langevin Steps

Reach equilibrium orders of magnitude faster with the birth/death scheme

Choice of approximation has very little effect on the equilibrium properties

100 Particles - Underdamped Langevin Dynamics with y = 10



Number of Particles and the Critical Bandwidth

0.6

o
N
1

Critical bandwidth o
o
N
|

KL Divergence between sampled
and expected distributions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bandwidth o

Critical bandwidth: the lowest value of for which the KL divergence is below 10-6

Increasing the number of particles leads to lower value of the critical bandwidth

19

100 1000

Number of particles N

Overdamped Langevin Dynamics



—ffect of Increasing the Bandwidth

| | | 04 + | | | | |
0.3 F -
= § +
Tq;) o 0.2 -
= & T
+
0.1 | = + -
4+
® for e
O 2 | | | | |
0 1 2 3 4
Time [O]

Gradually turns off the birth/death moves

20

Overdamped Langevin Dynamics



—ffect of the Birth-Death Stride M

8
_ Want to avoid doing the birth/death step at every Langevin step
|_
A _
>
() |
o |
S 4 - |
5 0.8 | i
& |
5 :
g 2 ] I P L s W 0 Y O A R TR I T T R R
- 0.6 FEPvETT T 1F T F T o ¥
o T 2 J‘
0 _ | :
5 ||
§ < 04 | -
I I
100 pr—————r—————rr——————rr—————r
: L | o _
. + |
* " @ + + : | = T
T s v 7 o2 | 1= [ :
S 0.1 + E - | steps
0.01 + T : F ; .
0.8 F E - 0 @ A B B SR
i : . 0 5x 104 10x104 15x104 20x10%4
£ 07F : T Time [6]
o : i ]
= 0.6 - N
0.5 —@ i
1 10 100 1000 10000
M

21 No significant difference in results as long as the percentage of accepted birth/death moves below 5-10% ( M = 1000 in this case)



—ffect of the Birth-Death Stride M

Want to avoid doing the birth/death step at every Langevin step
Effect of recalculating probabilities for M = 1000

T W O | ‘f
I
I

L I
|

I

Il I -
I |
I - -
|
: - e — T

r : first I r 1
| steps
|

‘__] - -

@ |
‘ 1 M M M ] M M ] M M M M ] M M M M
0 5x 104 10x10% 15x104 20x10%4
Time [6]

21 No significant difference in results as long as the percentage of accepted birth/death moves below 5-10% ( M = 1000 in this case)



More General Dynamics

Normally interested in the more general case of underdamped Langevin dynamics (or other stochastic dynamics)

p(1t) The corresponding Fokker-Planck equation
dx(t) = —dt N
m depends on both position x and momentum p
2
dp(t) = — VU(x(t))dt — yp(t)dr + \/ %dW(t), Px, p) F pAx) - pp)

Can be simulated using the Langevin Algorithm from Bussi and Parrinello, PRE 2007 with y = 10

Do the same as before and a birth/death term that depends only on
the position: works fine . , . , . ,

1

©
W
|
~N
~

Probability

0.5

O
N
|
~
-

0.1 / \

Autocorrelation Z(t) / Z(0)

] ] -
| | O —— ] 1 ] 1 ]

0 200 400 600 -2 v Ot 2
Lag time T [O] omentum

The average time between birth-death moves is 6000 Langevin steps, or 10 times the decorrelation time of the momentum



Energy landscape U(x) [kgT]

23

Speed of Equilibration is Independent of Barrier Height

20 | '__I__'__I_'__I__' |
- With Birth-Death — |
15 | Pure Langevin = = | -
o Potential — |
10 F T
5 - ——

Potentials with increased barrier height, but preserved
population of left/right states

O O
IS o

Fraction of particles in the Left state
o
N

without birth-death N
— _rt = =g =
e . ' I
] 1 ] 1 ] 1 ] 1
1000 2000 3000 4000 5000

Number of Langevin Steps

100 Particles - Underdamped Langevin Dynamics with y = 10



Higher-Dimensions: 2D Wolfe-Quapp Potential

5000

4000

3000

Number of Langevin Steps

2000

1000

0

o o0 O < N o
—

[19 Jo syun] (A)n ededspue ABJsuU3  g1e15 Joddn ey Ul seoILed 10 UoioRI
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1000 Particles - Underdamped Langevin Dynamics with y = 10
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Dk (mt|n)

104 |

107

Dimensions: 2

Energy Landscape U [kgT]

D Wolfe-Quapp Potential

Energy Landscape U(y) [kgT]

o
(0)}

o
»

o
N

0.1 0.2 03 04 05
o]

06 0.7 0.8 0.9

Fraction of particles in the upper state

o

1000

2000 3000
Number of Langevin Steps

100 Particles - Underdamped Langevin Dynamics with y = 10

4000 5000



20

DkL(m|n)

Higher-Dimensions: Scaled 2D Wolfe-Quapp Potential

1 l
T
w
o

N
SN

|
Energy Landscape U [kgT]

=
0o

=
N

Energy Landscape U(y) [kgT]

Fraction of particles in the upper state

01 02 03 04 05 06 0.7 08 0.9 1 0 1000 2000 3000 4000 5000
o Number of Langevin Steps

1000 Particles - Underdamped Langevin Dynamics with y = 10



—ffect of the Rate Factor 7,

Fokker-Planck-Brith-Death equation ~ 0,p, = L*p—7 o (p,)p;,

Brith-Death probabilities g; =1 —exp (—1,|A,|M0),

Fraction of particles in the Left state

O - L | L |

0.0001 M — —
0 2000 4000 6000 0.1 1 10

Number of Langevin Steps Rate factor Tq [s7]

27 The rate factor modulates the speed of equilibration, as expected
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Still Very Early On: Issues

What about higher-dimensional cases and atomistic simulations? How far can we push this?
- Main issue Is the estimation of the particle density
- Can we use some approximations?
- Probably not the way to go!
- => Perform the birth/death in a lower-dimensional subspace (i.e., CVs)

Samples the equilibrium Boltzmann distribution, similar as parallel-tempering
- Per se not an issue
- But, can be difficult to describe transition states and low populated states

- Can lose particles from a metastable state

Algorithm can only populate metastable states that have a walker
- Only “exploitation” mode and not “exploration” mode

- Need to know states Iin advance
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Still Very Early On: Outlook and Next Steps

Perform the birth/death step only a subspace of some CVs

- How ©

- Birth/d

oes the method work in this case”?

eath dynamics on a free energy landscape that is a-priori unknown

- Need to estimate the energy landscape on the fly

Combine with a CV-based enhanced sampling method => the long time goal

- Should help with many of the issues

- Add “exploration” mode to the combined method

- Better sample transition states and higher lying regions

Improve performance of multiple walker simulations — Our initial motivation

- Related

|dea: Lelievre, Rousset, & Stoltz, JCP 2007

Shared bias potential V(s)

A0 G a8 e

Collaboratively update bias potential V(s)
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