

European Research Council
Established by the European Commission

Coarse-graining and efficiently sampling with autoencoders

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

With Z. Belkacemi (Sanofi & ENPC), T. Lelièvre (ENPC/Inria) and P. Gkeka (Sanofi)

BRIN "Rare events" workshop, March 1st, 2023

Outline

- A (short/biased) review of machine learning approaches for CV
- Free-energy biasing and iterative learning with autoencoders¹
 - Autoencoders: definition, training, interpretation
 - Extended adaptive biasing force method
 - General presentation of the iterative algorithm
 - Illustration/sanity checks on toy examples

• Applications to systems of interest (alanine dipeptide, chignolin, HSP90)

¹Z. Belkacemi, P. Gkeka, T. Lelièvre, G. Stoltz, J. Chem. Theory Comput. 18 (2022) 2 / 40

Gabriel Stoltz (ENPC/Inria) March 2023

(A biased perspective on some) References

- ML reviews in MD (biased towards dimensionality reduction, not force fields)
 - A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, *Chem. Rev.* 121(16), 9722-9758 (2021)
 - P. Gkeka et al., J. Chem. Theory Comput. 16(8), 4757-4775 (2020)
 - F. Noé, A. Tkatchenko, K.-R. Müller, C. Clementi, Annu. Rev. Phys. Chem. 71, 361-390 (2020)
 - A.L. Ferguson, J. Phys.: Condens. Matter 30, 04300 (2018)
 - M. Chen, Eur. Phys. J. B 94, 211 (2021)

More general ML references

- P. Mehta, M. Bukov, C.-H. Wang, A.G.R.Day, C. Richardson, C.K. Fisher, D.J.
 Schwab, A high-bias, low-variance introduction to Machine Learning for physicists, *Physics Reports* 810, 1-124 (2019)
- I. Goodfellow, Y. Bengio, A. Courville Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org
- K.P. Murphy, Probabilistic Machine Learning: An Introduction (MIT Press, 2022)

Molecular description of systems

Statistical physics (1)

What is the structure of the protein? What are its typical conformations, and what are the transition pathways from one conformation to another?

Statistical physics (2)

ullet Microstate of a classical system of N particles:

$$(q,p) = (q_1,\ldots,q_N,\ p_1,\ldots,p_N) \in \mathcal{E} = (a\mathbb{T})^{3N} \times \mathbb{R}^{3N}$$

Positions q (configuration), momenta p (to be thought of as $M\dot{q}$)

• Hamiltonian $H(q,p) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i}$ (physics is in V)

Macrostate: Boltzmann-Gibbs probability measure (NVT)

$$\mu(dq \, dp) = Z_{\text{NVT}}^{-1} e^{-\beta H(q,p)} \, dq \, dp, \qquad \beta = \frac{1}{k_{\text{B}} T}$$

ullet Typical evolution equations: Langevin dynamics (friction $\gamma>0$)

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{2\gamma \beta^{-1}} \, dW_t \end{cases}$$

Reaction coodinates (RC) / collective variables (CV)

- Reaction coordinate $\xi:(a\mathbb{T})^D\to\mathbb{R}^d$ with $d\ll D$
- ullet Ideally: $\xi(q_t)$ captures the slow part of the dynamics
- Free energy computed on $\Sigma(z) = \{q \in (a\mathbb{T})^D \mid \xi(q) = z\}$ (foliation)

$$F(z) = -\frac{1}{\beta} \ln \left(\int_{\Sigma(z)} e^{-\beta V(q)} \, \delta_{\xi(q)-z}(dq) \right)$$

• Various methods: TI, FEP, ABF, metadynamics, etc²

7 / 40

Gabriel Stoltz (ENPC/Inria) March 2023

²Lelièvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)

ML approaches for finding CV

Some representative approaches for finding CV (1)

- Chemical/physical intuition (distances, angles, RMSDs, coordination numbers, etc)
- Short list of data-oriented approaches (depending on the data at hand...)
 - [supervised learning] separate metastable states
 - [unsupervised/static] distinguish linear models (PCA) and nonlinear ones (e.g. based on autoencoders such as MESA³)
 - [unsupervised/dynamics] operator based approaches (VAC, EDMD, diffusion maps, MSM; incl. tICA and VAMPNets)

(Huge literature! I am not quoting precise references here because the list would be too long)

• Other classifications^{4,5} possible, e.g. **slow vs. high variance CV**

Gabriel Stoltz (ENPC/Inria)

³W. Chen and A.L. Ferguson, *J. Comput. Chem.* 2018; W. Chen, A.R. Tan, and A.L. Ferguson, *J. Chem. Phys.* 2018

⁴P. Gkeka et al., J. Chem. Theory Comput. (2020)

⁵A. Gliemlo et al., Annu. Rev. Phys. Chem. (2021)

Some representative approaches for finding CV (2)

CV construction with autoencoders

Bottleneck autoencoders (1)

Bottleneck autoencoders (2)

ullet Data space $\mathcal{X} \subseteq \mathbb{R}^D$, bottleneck space $\mathcal{A} \subseteq \mathbb{R}^d$ with d < D

$$f(x) = f_{\mathsf{dec}}\Big(f_{\mathsf{enc}}(x)\Big)$$

where $f_{\mathsf{enc}}: \mathcal{X} \to \mathcal{A}$ and $f_{\mathsf{dec}}: \mathcal{A} \to \mathcal{X}$

Collective variable = encoder part

$$\xi = f_{\rm enc}$$

- ullet Fully connected neural network, symmetrical structure, 2L layers
- ullet Parameters ${f p}=\{p_k\}_{k=1,\dots,K}$ (bias vectors b_ℓ and weights matrices W_ℓ)

$$f_{\mathbf{p}}(x) = g_{2L} [b_{2L} + W_{2L} \dots g_1(b_1 + W_1 x)],$$

with activation functions g_{ℓ}

(examples: $\tanh(x)$, ReLU $\max(0,x)$, sigmoid $\sigma(x)=1/(1+\mathrm{e}^{-x})$, etc)

Gabriel Stoltz (ENPC/Inria)

Training autoencoders

ullet Theoretically: minimization problem in $\mathcal{P}\subset\mathbb{R}^K$

$$\mathbf{p}_{\mu} \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{P}} \mathcal{L}(\mu, \mathbf{p}),$$

with cost function

$$\mathcal{L}(\mu, \mathbf{p}) = \mathbb{E}_{\mu}(\|X - f_{\mathbf{p}}(X)\|^2) = \int_{\mathcal{X}} \|x - f_{\mathbf{p}}(x)\|^2 \ \mu(dx)$$

• In practice, access only to a sample: minimization of empirical cost

$$\mathcal{L}(\hat{\mu}, \mathbf{p}) = \frac{1}{N} \sum_{i=1}^{N} \|x^i - f_{\mathbf{p}}(x^i)\|^2, \qquad \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}$$

ullet Typical choices: canonical measure μ , data points x^i postprocessed from positions q (alignement to reference structure, centering, reduction to backbone carbon atoms, etc)

A variance interpretation of autoencoders

- Total variance $Var(X) = Var\left[\mathbb{E}(X|f_{\mathrm{enc}}(X))\right] + \mathbb{E}\left[Var(X|f_{\mathrm{enc}}(X))\right]$
- Training w.r.t. decoder part performed analytically in principle as

$$\begin{split} \min_{f_{\text{enc}}} \left[\min_{f_{\text{dec}}} \int_{\mathcal{X}} |x - f_{\text{dec}}(f_{\text{enc}}(x))|^2 \, \mu(dx) \right] &= \min_{f_{\text{enc}}} \ell(f_{\text{enc}}) \\ \text{with} \quad \ell(f_{\text{enc}}) &= \mathbb{E} \left[\left(X - \mathbb{E}(X|f_{\text{enc}}(X)) \right)^2 \right] = \mathbb{E} \left[\operatorname{Var}(X|f_{\text{enc}}(X)) \right] \\ &= \operatorname{Var}(X) - \operatorname{Var} \left[\mathbb{E}(X|f_{\text{enc}}(X)) \right] \end{split}$$

- Minimizing $\ell(f_{\text{enc}})$ equivalent to maximizing $\operatorname{Var}\left[\mathbb{E}(X|f_{\text{enc}}(X))\right]$ = minimizing intraclass dispersion vs. maximizing interclass dispersion = small spread of data points for f_{enc} given around the mean vs. the
- mean values associated with $f_{
 m enc}$ given should be as spread out as possible
- Principal curve interpretation, as for string method⁶

⁶Venturoli/Vanden-Eijnden (2009), Gerber/Whitaker (2013), Gerber (2021)

Gabriel Stoltz (ENPC/Inria) March 2023

15 / 40

Some elements on training neural networks

Many local minima...

• Actual procedure:

• "Early stopping": stop when validation loss no longer improves⁷

- Choice of optimization method⁸, here Adam
- No added regularization here (e.g. ℓ^1/ℓ^2 , dropout, etc)

Gabriel Stoltz (ENPC/Inria)

⁷See Section 7.8 in [Goodfellow/Bengio/Courville]

⁸See Chapter 8 in [Goodfellow/Bengio/Courville]

Free energy biasing for complex CV

Extended systems

- ullet Computing $\nabla \xi$ already difficult, higher order derivatives is worse
- Extended system strategy : $V_{\rm ext}(q,\lambda) = V(q) + \frac{\kappa}{2} \big(\xi(q) \lambda\big)^2$
- ullet Free energy for the (simple) collective variable $\xi_{\mathrm{ext}}(q,\lambda)=\lambda$

$$F_{\kappa}(z) = -\frac{1}{\beta} \ln \int_{\mathcal{D}} e^{-\beta V_{\text{ext}}(q,z)} dq + C$$

$$= -\frac{1}{\beta} \ln \int \left(\int_{\Sigma(\zeta)} e^{-\beta V(q)} \delta_{\xi(q)-\zeta}(dq) \right) e^{-\beta \kappa(\zeta-z)^2/2} d\zeta + C$$

$$= -\frac{1}{\beta} \ln \int e^{-\beta F(\zeta)} \chi_{\kappa}(z-\zeta) d\zeta + \widetilde{C}, \qquad \chi_{\kappa}(s) = \left(\frac{\beta \kappa}{2\pi} \right)^{d/2} e^{-\beta \kappa s^2/2}$$

$$\xrightarrow{\kappa \to +\infty} F(z)$$

Calls for taking κ large

Extended ABF

Extended overdamped Langevin dynamics (κ limits Δt ...)

$$\begin{cases} dq_t = \left[-\nabla V(q_t) + \kappa(\xi(q_t) - \lambda_t) \nabla \xi(q_t) \right] dt + \sqrt{2\beta^{-1}} dW_t^q \\ d\lambda_t = -\kappa [\lambda_t - \xi(q_t)] dt + \sqrt{2\beta^{-1}} dW_t^{\lambda} \end{cases}$$

Bias by the free energy: add $F_\kappa'(\lambda)=$ steady state conditional average of $\kappa(\lambda-\xi(q))$

Extended ABF overdamped Langevin dynamics

$$\begin{cases} dq_t = \left[-\nabla V(q_t) + \kappa(\xi(q_t) - \lambda_t) \nabla \xi(q_t) \right] dt + \sqrt{2\beta^{-1}} dW_t^q \\ d\lambda_t = \kappa[\xi(q_t) - \mathbb{E}(\xi(q_t) | \lambda_t)] dt + \sqrt{2\beta^{-1}} dW_t^{\lambda} \end{cases}$$

In practice,
$$\mathbb{E}(\xi(q_t) \mid \lambda_t)$$
 is estimated by
$$\frac{\displaystyle\int_0^t \delta_{\varepsilon}(\lambda_s - \Lambda) \xi(q_s) \, ds}{\displaystyle\max\left(\eta, \int_0^t \delta_{\varepsilon}(\lambda_s - \Lambda) \, ds\right)}$$

Unbiased estimate of the free energy in eABF

• Stationarity: configurations distributed according to $e^{-\beta(V_{\rm ext}(q,\lambda)-F_{\kappa}(\lambda))}$

$$\rho(z,\lambda) = Z_{\kappa}^{-1} \exp\left(-\beta \left[F(z) + \frac{\kappa}{2}(z-\lambda)^2 - F_{\kappa}(\lambda)\right]\right)$$

• Unbiased estimator of the mean force (CZAR)⁹

$$F'(z) = -\frac{1}{\beta} \frac{d[\ln \overline{\rho}(z)]}{dz} + \kappa(\langle \lambda \rangle_z - z)$$

with
$$\overline{\rho}(z)=\int\!\!\rho(z,\lambda)\,d\lambda$$
 and $\langle\lambda\rangle_z=\frac{1}{\overline{\rho}(z)}\int\!\!\lambda\rho(z,\lambda)\,d\lambda$ (conditional dist.)

<u>Proof:</u> start from $F'(z) = -\frac{1}{\beta} \frac{\partial_z \rho(z,\lambda)}{\rho(z,\lambda)} - \kappa(z-\lambda)$, multiply both sides of the equality by $\rho(z,\lambda)/\overline{\rho}(z)$ and integrate with respect to λ

Gabriel Stoltz (ENPC/Inria) March 2023 20 / 40

⁹A. Lesage, T. Lelièvre, G. Stoltz and J. Hénin, J. Phys. Chem. B (2017)

Joint distribution of (λ, z) (deca-alanine)

logarithmic scale

$$\sigma^2 = \frac{1}{\beta \kappa}$$

Marginal distribution in λ nearly uniform (as expected)

Iterative free energy biasing/autoencoder learning

Training on modified target measures

- Interesting systems are metastable (no spontaneous exploration of phase space) Sample according to a biased distribution $\widetilde{\mu}$ (importance sampling)
- ullet Need for reweighting $w(x) = \mu(x)/\widetilde{\mu}(x)$
- Minimization problem: theoretical cost function

$$\mathcal{L}(\mu, \mathbf{p}) = \int_{\mathcal{X}} \|x - f_{\mathbf{p}}(x)\|^2 w(x) \widetilde{\mu}(dx),$$

actual cost function

$$\mathcal{L}(\widehat{\mu}_{\text{wght}}, \mathbf{p}) = \sum_{i=1}^{N} \widehat{w}_i \|x^i - f_{\mathbf{p}}(x^i)\|^2, \qquad \widehat{w}_i = \frac{\mu(x^i)/\widetilde{\mu}(x^i)}{\sum_{j=1}^{N} \mu(x^j)/\widetilde{\mu}(x^j)}$$

- ullet Only requires the knowledge of μ and $\widetilde{\mu}$ up to a multiplicative constant.
- Minibatching: multinomial distribution for sampling with replacement

Gabriel Stoltz (ENPC/Inria)

 $^{^{10}}$ As done in RAVE for instance, see Ribeiro/Bravo/Wang/Tiwary (2018), Wang/Ribeiro/Tiwary (2019)

Proof of concept with free energy biasing (1)

Two dimensional potential ("entropic switch")¹¹

$$V(x_1, x_2) = 3e^{-x_1^2} \left(e^{-(x_2 - 1/3)^2} - e^{-(x_2 - 5/3)^2} \right)$$
$$- 5e^{-x_2^2} \left(e^{-(x_1 - 1)^2} + e^{-(x_1 + 1)^2} \right) + 0.2x_1^4 + 0.2(x_2 - 1/3)^4$$

Trajectory from $q^{j+1}=q^j-\nabla V(q^j)\Delta t+\sqrt{2\beta^{-1}\Delta t}G^j$ for $\beta=4$ and $\Delta t=10^{-3}\longrightarrow$ metastability in the x_1 direction

Gabriel Stoltz (ENPC/Inria) March 2023 24

¹¹S. Park, M.K. Sener, D. Lu, and K. Schulten (2003)

Proof of concept with free energy biasing (2)

ullet Free energy biasing: distributions $Z_i^{-1} \exp\left(-\beta \left[V(q) - F_i(\xi_i(q))
ight]
ight)$

$$F_1(x_1) = -\frac{1}{\beta} \ln \left(\int_{\mathbb{R}} \mathrm{e}^{-\beta V(x_1,x_2)} dx_2 \right), \qquad F_2(x_2) = -\beta^{-1} \ln \left(\int_{\mathbb{R}} \dots dx_1 \right)$$

Three datasets: unbiased trajectory, trajectories biased using F_1 and F_2 (free energy biased trajectories are shorter but same number of data points $N=10^6$)

- \bullet Autoencoders: 2-1-2 topology, activation functions \tanh (so that CV is in [-1,1]) then identity
- Five training scenarios:
 - training on long unbiased trajectory (reference CV)
 - ξ_1 -biased trajectory, with or without reweighting
 - ξ_2 -biased trajectory, with or without reweighting

Proof of concept with free energy biasing (3)

Normalize to compare

$$\xi_{\mathsf{AE}}^{\mathsf{norm}}(x) = \frac{\xi_{\mathsf{AE}}(x) - \xi_{\mathsf{AE}}^{\min}}{\xi_{\mathsf{AE}}^{\max} - \xi_{\mathsf{AE}}^{\min}}$$

Reference CV

(distinguishes well the 3 wells)

x_1 -biased trajectory

 x_2 -biased trajectory

Full iterative algorithm (Free Energy Biasing and Iterative Learning with AutoEncoders)

Input: Initial condition q_0 , autoencoder topology and initialization parameters A_{init} , number of samples N, simulation procedure S and adaptive biasing procedure S_{AB} , maximum number of iterations I_{max} , minimum convergence score s_{min}

Initialization

```
Sample traj<sub>0</sub> \leftarrow S(q_0, N)
Initialize autoencoder AE_0 \leftarrow A_{\text{init}}
Train AE<sub>0</sub> on traj<sub>0</sub> with weights (\widehat{w}_0, \dots, \widehat{w}_N) = (1, \dots 1)
Extract the encoder function \xi_0: x \mapsto \xi_0(x)
```

Iterative update of the collective variable

Set $s \leftarrow \operatorname{regscore}(\xi_{i-1}, \xi_i)$

Set
$$i \leftarrow 0$$
, $s \leftarrow 0$
While $i < I_{\max}$ and $s < s_{\min}$
Set $i \leftarrow i+1$
Sample traj_i , $F_i \leftarrow S_{\mathsf{AB}}(q_0, N, \xi_{i-1})$
Compute weights $\widehat{w}_j \propto \mathrm{e}^{-\beta F_i(\xi_{i-1}(x^j))}$
Initialize autoencoder $\mathsf{AE}_i \leftarrow A_{\mathsf{init}}$
Train AE_i on traj_i with sample weights \widehat{w}_j

Extract the encoder function $\xi_i : x \mapsto \xi_i(x)$

Production of output:

Set $\xi_{\text{final}} \leftarrow \xi_i$

Sample traj_{final}, $F_{\text{final}} \leftarrow S_{\text{AB}}(q_0, N_{\text{final}}\xi_{\text{final}})$ with N_{final} large enough to ensure PMF convergence

Threshold s_{\min} to be determined

in our case: extended ABF

Convergence metric to be made precise

Discussion on the convergence criterion (1/2)

- ullet Check convergence of CV? Quantify $\xi_i pprox \Phi(\xi_{i-1})$ for some monotonic function Φ
- ullet Approach: approximate Φ by a linear model (Nonlinear regression may be needed)
- ullet Regression score between ξ and ξ'
 - \bullet Two sets of values of CV $(\xi(q^1),\dots,\xi(q^N))$ and $(\xi'(q^1),\dots,\xi'(q^N))$
 - Match them with a linear model M(z) = Wz + b

$$\ln R^2 = 1 - \frac{\sum_{i=1}^N \left\| \xi'(q^i) - M(\xi(q^i)) \right\|^2}{1 + \frac{1}{N}}$$

- Coefficient of determination $R^2=1-\frac{\sum\limits_{i=1}^{N}\|\xi'(q^i)-\bar{\xi}'\|^2}{\sum\limits_{i=1}^{N}\|\xi'(q^i)-\bar{\xi}'\|^2}$
- Maximization of R^2 w.r.t. W, b provides $\operatorname{regscore}(\xi', \xi)$
- ullet Value of s_{\min} computed using some bootstrap procedure

Discussion on the convergence criterion (2/2)

Histogram of the R^2 scores obtained using subsets of $N=10^5$ points out of 10^6 points (vertical black line = 5% percentile).

(Left: Alanine dipeptide. Right: Chignolin)

The iterative algorithm on the toy 2D example

Left: with reweighting Convergence to $CV \simeq x_1$

Right: without reweighting No convergence (cycles between two CVs)

Applications to systems of interest

Alanine dipeptide

Molecular dynamics:

openmm with openmm-plumed to link it with plumed colvar module for eABF and computation of free energies timestep 1 fs, friction $\gamma=1~{\rm ps^{-1}}$ in Langevin dynamics

• Machine learning:

keras for autoencoder training

input = carbon backbone (realignement to reference structure and centering) neural network: topology 24-40-2-40-24, tanh activation functions

¹²See also Chen/Liu/Feng/Fu/Cai/Shao/Chipot, J. Chem. Inf. Model. (2022)

Ground truth computation

Long trajectory (1.5 $\mu \mathrm{s}),~N=10^6$ (frames saved every 1.5 ps)

CV close to dihedral angles Φ,Ψ

Quantify $s_{\min} = 0.99$ for $N = 10^5$ using a bootstraping procedure

For the iterative algorithm: 10 ns per iteration

(compromise between times not too short to allow for convergence of the free energy, and not too large in order to alleviate the computation cost)

Results for the iterative algorithm

iter.	regscore	(Φ, Ψ)
0	_	0.922
1	0.872	0.892
2	0.868	0.853
3	0.922	0.973
4	0.999	0.972
5	0.999	0.970
6	0.999	0.971
7	0.999	0.967
8	0.998	0.966
9	0.999	0.968

Chignolin (Folded/misfolded/unfolded states)

HSP90 (work in progress...)

Chaperone protein assisting other proteins to fold properly and stabilizing them against stress, including proteins required for tumor growth

→ look for inhibitors (e.g. targeting binding region of ATP; focus only on the N-terminal domain)

36 / 40

(picture from https://en.wikipedia.org/wiki/File:Hsp90_schematic_2cg9.png)

HSP90 (work in progress...)

6 conformational states, data from 10×20 ns trajectories, input features = 207 C carbons, AE topology 621-100-5-100-621

Issue: dimension of bottleneck?

Some perspectives

Some perspectives

- Incorporating knowledge/information on the transition states?
 - compute mean square error with respect to another distribution?
 - add terms to the loss function? (e.g. related to MEP¹³)

Incorporating dynamical information?

- time-lagged autoencoders and their variations¹⁴
- ullet making use of the generator of the dynamics 15

Better understanding autoencoders

- choice of topology: mathematical analysis?
- simple dimensionality reduction methods in the bottleneck (to allow for free energy computations)

Gabriel Stoltz (ENPC/Inria)

¹³Ramil/Boudier/Gorayeva/Marinica/Maillet, J. Chem. Theory Comput. (2022)

¹⁴Chen/Sidky/Ferguson, J. Chem. Phys. (2019)

¹⁵Zhang/Li/Schütte, J. Comput. Phys. (2022)

Interest in interfaces between ML and MD?

Program March-May 2024 at University of Chicago

