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Outline

e A (short/biased) review of machine learning approaches for CV

e Free-energy biasing and iterative learning with autoencoders’
@ Autoencoders: definition, training, interpretation
@ Extended adaptive biasing force method
@ General presentation of the iterative algorithm

o lllustration/sanity checks on toy examples

e Applications to systems of interest (alanine dipeptide, chignolin, HSP90)

1Z. Belkacemi, P. Gkeka, T. Leliévre, G. Stoltz, J. Chem. Theory Comput. 18 (2022)
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(A biased perspective on some) References

e ML reviews in MD (biased towards dimensionality reduction, not force fields)

@ A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, Chem. Rev.
121(16), 9722-9758 (2021)

P. Gkeka et al., J. Chem. Theory Comput. 16(8), 4757-4775 (2020)

@ F. Noé, A. Tkatchenko, K.-R. Miiller, C. Clementi, Annu. Rev. Phys. Chem. 71,
361-390 (2020)

A.L. Ferguson, J. Phys.: Condens. Matter 30, 04300 (2018)
@ M. Chen, Eur. Phys. J. B 94, 211 (2021)

e More general ML references

@ P. Mehta, M. Bukov, C.-H. Wang, A.G.R.Day, C. Richardson, C.K. Fisher, D.J.
Schwab, A high-bias, low-variance introduction to Machine Learning for physicists,
Physics Reports 810, 1-124 (2019)

@ |. Goodfellow, Y. Bengio, A. Courville Deep Learning (MIT Press, 2016)
http://wuw.deeplearningbook.org

@ K.P. Murphy, Probabilistic Machine Learning: An Introduction (MIT Press, 2022)
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Molecular description of systems
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Statistical physics (1)

What is the structure of the protein? What are its typical conformations,
and what are the transition pathways from one conformation to another?
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Statistical physics (2)
e Microstate of a classical system of N particles:

(Qap) = (QL"' ydN pla"'>pN) €= (aT)3N X R3N
Positions ¢ (configuration), momenta p (to be thought of as M¢)

N o2
e Hamiltonian H(q,p) =V (q) + Z 22:; (physics is in V')
i=1 <

Macrostate: Boltzmann—Gibbs probability measure (NVT)

o 1
udadp) = Zgype P dgdp, B =1

e Typical evolution equations: Langevin dynamics (friction v > 0)
dqt = Milpt dt
dps = —VV(q) dt — yM 'pydt + /2yB~L dW;
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Reaction coodinates (RC) / collective variables (CV)

e Reaction coordinate ¢ : (aT)” — R? with d < D
e |deally: £(q¢) captures the slow part of the dynamics

e Free energy computed on X(z2) = {q € (aT)” |£(q) = 2} (foliation)

F(z) = —;ln (/E( )e*ﬂv(q) 5§(q)z(dq)>

e Various methods: TI, FEP, ABF, metadynamics, etc?

2| elitvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective
(Imperial College Press, 2010)
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ML approaches
for finding CV
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Some representative approaches for finding CV (1)

° Chemical/physical intuition (distances, angles, RMSDs, coordination numbers, etc)

e Short list of data-oriented approaches (depending on the data at hand...)
@ [supervised learning] separate metastable states

o [unsupervised/static| distinguish linear models (PCA) and nonlinear
ones (e.g. based on autoencoders such as MESA3)

@ [unsupervised/dynamics| operator based approaches (VAC, EDMD,
diffusion maps, MSM; incl. tICA and VAMPNets)

(Huge literature! | am not quoting precise references here because the list would be too long)

e Other classifications*® possible, e.g. slow vs. high variance CV

3W. Chen and A.L. Ferguson, J. Comput. Chem. 2018; W. Chen, A.R. Tan, and
A.L. Ferguson, J. Chem. Phys. 2018
*P. Gkeka et al., J. Chem. Theory Comput. (2020)
®A. Gliemlo et al., Annu. Rev. Phys. Chem. (2021)
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Some representative approaches for finding CV (2)

Methods for Choosing Collective variables

High-variance CVs

Principal Components Locally Linear Independent Component  Laplacian and Hessian  Local tangent space
Analysis (PCA) Embedding (LLE) Analysis (ICA) eigenmaps alignment

Semidefinite embedding/

Kernel PCA  Nonlinear PCA  [somap  Diffusion maps  Multidimensional scaling R TR iR G

Diffusion-Map-directed MD || Intrinsic Map Dynamics Smooth and nonlinear datadriven CVs

(DM-d-MD) (iMapD) (Sandcv)
Molecular Enhanced Sampling Reweighted Autoencoded Variations REinforcement Learning based on
with Autoencoders (MESA) Bayes for Enhanced Sampling (RAVE) Adaptive samPling (REAP)
Slow CVs
Variational Approach to Conformational dynamics (VAC) ~ (extended) Dynamical Mode Decomposition ((E)DMD)
Kernel TICA Markov State Models (MSM) Time-lagged autoencoders (TAEs)
Time-lagged Independent Component Deep Canonical Correlation Analysis Variational Dynamics Encoders
Analysis (TICA) (DCCA) (VDEs)

Variational Approach for Markov Processes nets (VAMPnets)  State-free Reversible VAMPnets (SRV)
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CV construction

with autoencoders
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Bottleneck autoencoders (1)
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Bottleneck autoencoders (2)

e Data space X C RP, bottleneck space A C R with d < D
1) = foee (fenel))

where fenc : X = A and fgec : A — X

Collective variable = encoder part

é. = fenc

e Fully connected neural network, symmetrical structure, 2L layers

e Parameters p = {p; }r=1,..k (bias vectors by and weights matrices V)

fo(@) = gar [bar, + War ... g1(b1 + Whx)],

with activation functions gy
(examples: tanh(x), ReLU max(0, z), sigmoid o(z) = 1/(1 4+ e™%), etc)
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Training autoencoders
e Theoretically: minimization problem in P ¢ RX

p, € argmin L(u,p),
peP

with cost function

L(p,p) = Eu(|X — (X)) = /X |z — fo(@)|* p(da)
e In practice, access only to a sample: minimization of empirical cost
N A | N
L(p) = 5 Solla' = fo@)P = 5 D
i=1 =1

e Typical choices: canonical measure 1, data points x* postprocessed
from positions q (alignement to reference structure, centering, reduction to backbone

carbon atoms, etc)
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A variance interpretation of autoencoders

» Total variance | Var(X) = Var [E(X] fonc(X))] + E [Var(X| fone (X))

e Training w.r.t. decoder part performed analytically in principle as

i [ | [0 oo (0) )] = g (o)

fenc | fdec ,
with g(fenc) =E [(-X - E(X‘fenc(-X)D :| =K [Var(X‘fenc(X))}
= Var(X) — Var [E(X| fenc(X))]

e Minimizing ¢( fenc) equivalent to maximizing Var [E(X | fonc(X))]

= minimizing intraclass dispersion vs. maximizing interclass dispersion

= small spread of data points for fenc given around the mean vs. the
mean values associated with fe,c given should be as spread out as possible

e Principal curve interpretation, as for string method®

®Venturoli/Vanden—Eijnden (2009), Gerber/Whitaker (2013), Gerber (2021)
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Some elements on training neural networks

e Many local minima...

e Actual procedure:

e “Early stopping”: stop when validation loss no longer improves’

Error

Early Testing Error
Termination

Training Error
1
1

Training Steps
@ Choice of optimization method®, here Adam

@ No added regularization here (e.g. ¢!/¢?, dropout, etc)

See Section 7.8 in [Goodfellow/Bengio/Courville]

8See Chapter 8 in [Goodfellow/Bengio/Courville]
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Free energy biasing

for complex CV
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Extended systems

e Computing V¢ already difficult, higher order derivatives is worse

e Extended system strategy : Vext(q, \) = V(q) + g(f(q) - )\)2

e Free energy for the (simple) collective variable ey (g, A) = A

Fi(z) = —;ln/pe_ﬁve’“(q’z) dg+C

1 _ Br(c—2)?
= _Bln (/ e 6V(q>5§(q)_¢(dq)> e P22 qc 4
D(9)

= —1ln/e_ﬂF(<) (z=C)d¢+C (s) = br d/2e_5“52/2
3 Xk ) Xk o

— F(z)
K——+00

Calls for taking x large

Gabriel Stoltz (ENPC/Inria) March 2023 18 /40



Extended ABF

Extended overdamped Langevin dynamics (x limits At...)
{ day = | = VV(gr) + K(E(ar) = M)VE(ar) | dt + /25 Tdw !
dAr = —k[\ — E(g))dt + /251w
Bias by the free energy: add F()\) = steady state conditional average of (X — &(q))
Extended ABF overdamped Langevin dynamics
{ day = | = VV(a0) + #(€(a) = \)VE(ar) | dt + /28w
X\ = k[E(ar) — E(E(ar) | M)] dt + /28~ 1 dW)

/0 5 (Me — N)E(gs) ds

max <n, /Ot 5-(As — A) ds)

March 2023 19 /40

In practice, E({(q¢) | A\¢) is estimated by
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Unbiased estimate of the free energy in eABF

e Stationarity: configurations distributed according to e~#(Vext(2:2)=Fx(X))
_ K
Pz N) = Z: exp (=8 [F(2) + 5 (2 = N2 = Fu(V)])

e Unbiased estimator of the mean force (CZAR)°

F'(z) = —;d[]nd’;(’z)] + £((A), = 2)

with p(z) :/p(z, A)dX and (\), = p(lz)/)\p(z,k) dA (conditional dist.)

l 0zp(z,A)

B p(zA)
p(z,\)/p(2) and integrate with respect to A

Proof: start from F’(z) =

— k(z — A), multiply both sides of the equality by

°A. Lesage, T. Lelievre, G. Stoltz and J. Hénin, J. Phys. Chem. B (2017)
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Joint distribution of (A, z) (deca-alanine)

logarithmic scale

<
1
o= —
Bk
Marginal distribution
= in A nearly uniform
< (as expected)

15 20 25 30
z(R) z (R)
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lterative
free energy biasing/

autoencoder learning
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Training on modified target measures

o Interesting systems are metastable (no spontaneous exploration of phase space)
Sample according to a biased distribution zi (importance sampling)

e Need for reweighting!® w(z) = u(x)/f()

e Minimization problem: theoretical cost function

o) = [ o = fola) [ o),
actual cost function

L(Fwght wi|z" — 2 b; = p(z") /(")
) Z = 5] SV (ad) /(@)

e Only requires the knowledge of 1 and &z up to a multiplicative constant.

e Minibatching: multinomial distribution for sampling with replacement

As done in RAVE for instance, see Ribeiro/Bravo/Wang/Tiwary (2018),
Wang/Ribeiro/Tiwary (2019)
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Proof of concept with free energy biasing (1)

Two dimensional potential (“entropic switch”)!!

V(x]_,(l/'g) = ge—m% (e—(x2—1/3)2 B e_(x2_5/3)2>

5o (e—(x1—1)2 + e—(x1+1)2) +0.227 + 0.2(z2 — 1/3)*

3 . 2

0 10000 20000 30000 40000
time

Trajectory from ¢/*! = ¢/ — VV(¢/)At + /2B~ 1AtG7 for 3 = 4 and
At = 1073 — metastability in the z; direction

1S Park, M.K. Sener, D. Lu, and K. Schulten (2003)
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Proof of concept with free energy biasing (2)

e Free energy biasing: distributions Z; ' exp (-3 [V (q) — Fi(&(q))])

Fi(xy) = —éln (/R eﬁv(zl’“)dm) , Fy(xg) = —B'In (/R...dx1>

Three datasets: unbiased trajectory, trajectories biased using F; and Fy

(free energy biased trajectories are shorter but same number of data points N = 106)

e Autoencoders: 2-1-2 topology, activation functions tanh (so that CV is
n [—1,1]) then identity

e Five training scenarios:
@ training on long unbiased trajectory (reference CV)

o &-biased trajectory, with or without reweighting

@ &o-biased trajectory, with or without reweighting
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Proof of concept with free energy biasing (3)

95 Unweighted Training Weighted Training
- 1.0
. 08
Normalize to compare E
B 065
8 )
min 04
é-norm( ) €AE( ) 5 -
é'max gmln
0.0
i Unbiased training . .
2 w0 x1-biased trajectory
20 0.8
15 =
L Lo 0 F’ﬁ ) Unweighted Training Weighted Training
" 0 0ad ’ 1.0
00 g
~05 02" 08 2
-10 N} 063
-1 rﬂ‘ 1 2 2 ;
047
Reference CV -
(distinguishes well the 3 wells) 0

To-biased trajectory
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FU ” ite rative a |g0|’|th m (Free Energy Biasing and Iterative Learning with AutoEncoders)

Input: Initial condition qo, autoencoder topology and initialization parameters A;nit, number of
samples NN, simulation procedure S and adaptive biasing procedure Sag, maximum number of
iterations Imax, Minimum convergence score Smin

Initialization

Sample trajo + S(qo, N)

Initialize autoencoder AEg < Ajnit

Train AEg on trajo with weights (@o, ..., wn) = (1,...1)
Extract the encoder function &g : z — &o(x)

Iterative update of the collective variable
Seti<+ 0,5+ 0

While i < Imax and s < Smin Threshold sy to be determined
Seti<+i+1
Sample traj;, F; < Sas(qo, N, &—1) in our case: extended ABF

Compute weights w; o< e AFi(Ei—1(2"))

Initialize autoencoder AE; < Ajnit

Train AE; on traj; with sample weights @;

Extract the encoder function &; : x — &;(x)

Set s < regscore(&;—-1,&;) Convergence metric to be made precise

Set final < &i

Production of output:
Sample trajginal, Frinal < SaB (90, Nfinal&final) With Nfinal large enough to ensure PMF convergence
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Discussion on the convergence criterion (1/2)

e Check convergence of CV?
Quantify & ~ ®(&;_1) for some monotonic function ®

e Approach: approximate ® by a linear model (Nonlinear regression may be needed)

e Regression score between ¢ and &’

e Two sets of values of CV (£(qh),...,&(¢Y)) and (€'(qY),..., & ("))
e Match them with a linear model M (z) = Wz +b

N
S leqh) — M@
=1

o Coefficient of determination R? = 1 — =

N )
> llg'@) - ¢
i=1

e Maximization of R? w.r.t. W,b provides regscore(¢’, €)

e Value of s,;, computed using some bootstrap procedure
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Discussion on the convergence criterion (2/2)

50
125
100 40
30
L 75 %
o
E 50 EEG
25 10
0
0.995 0.996 0.997 0.998 0.999 1.000 070 0.75 080 0.85 090 095 100
R2 scores R2 scores

Histogram of the R? scores obtained using subsets of N = 10° points out
of 10° points (vertical black line = 5% percentile).
(Left: Alanine dipeptide. Right: Chignolin)
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The iterative algorithm on the toy 2D example

Iteration 1

10

Tteration 2

Tteration 3

Tteration 4

~

Iteration 5

Iteration G

0.0
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Left: with reweighting
Convergence to CV ~ z;

Right: without reweighting
No convergence
(cycles between two CVs)

Iteration 1

Iteration 2

Tteration 3

Iteration 4

Iteration 5

Iteration 6

March 2023

08

0.6

reoder CV

En
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Applications

to systems of interest
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Alanine dipeptide

e Molecular dynamics:

openmm with openmm-plumed to link it with plumed
colvar module for eABF and computation of free energies!?
timestep 1 fs, friction v = 1 ps~! in Langevin dynamics

e Machine learning:
keras for autoencoder training
input = carbon backbone (realignement to reference structure and centering)

neural network: topology 24-40-2-40-24, tanh activation functions
: ‘

T T T
1 2 3

Free Energy

2See also Chen/Liu/Feng/Fu/Cai/Shao/Chipot, J. Chem. Inf. Model. (2022)
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Ground truth computation

Long trajectory (1.5 us), N = 10° (frames saved every 1.5 ps)
CV close to dihedral angles ®, ¥

-2 0 2 Lo 0.5 0.0 0.5 Lo 0.5 0.0 0.5
o CVy CVy

Quantify sy, = 0.99 for N = 10° using a bootstraping procedure

For the iterative algorithm: 10 ns per iteration
(compromise between times not too short to allow for convergence of the free energy, and not

too large in order to alleviate the computation cost)
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Results for the iterative algorithm

Tteration 0

3
2
-1
2
—3
-3 -2 -1 '2 2 3
iter. | regscore | (®,0)
0 — 0.922
1 0.872 0.892
2 0.868 0.853
3 0.922 0.973
4 0.999 0.972
5 0.999 0.970
6 0.999 0.971
7 0.999 0.967
8 0.998 0.966
9 0.999 0.968
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Chignolin (Folded /misfolded /unfolded states)

Iteration 3
10 0
S
ASP3 £ o¢ @15
ASP3 Eos £
_ a ﬁ 10
0.4
2 i)
[ 0.2 108
\‘ o
0.0 0.0
0 20 40 0.0 0.5 10 15 2.0
Time (ns) D(ASP3N-GLY70)
i Iteration 5
Iteration 0
10 2.0 1o 20
5 08 S
E 0.8 g‘a 15 ;E« ‘; 15
T
Lo £ oo £
a z Bos 5
g 0.4 E = %
z o Qos| ¥ ) © 02 g, 0s
a b
0.0 0.0
00 00 3 2 40 00 05 10 15
o 25 50 75 100 0.0 0.5 10 15 2.0 .
Time (ns) D(ASP3N-GLY70) Time (ns) D(ASP3N-GLY70)
; Iteration 6
Iteration 1
10 2.0 1o 20
s 08 S
E 0.8 2 15 g % 15
Eos E £oe E o
a z10 8oa A
2 os o = @
=4
Z . Qos 02 g, 05
: a
0.0 5 0075 o5 0 s 2o 00g 20 40 %% 05 10 15 2.0
Time (ns) D(ASP3N-GLY70) Time (ns) D(ASP3N-GLY70)
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HSP90 (work in progress...)

ATP

(picture from https://en.wikipedia.org/wiki/File:Hsp90_schematic_2cg9.png)
Gabriel Stoltz (ENPC/Inria)

Chaperone protein
assisting other
proteins to fold
properly and
stabilizing them
against stress,
including proteins
required for tumor
growth

— look for inhibitors
(e.g. targeting binding
region of ATP; focus
only on the
N-terminal domain )
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HSP90 (work in progress...)

10 05 0.0 05 10

6 conformational states, data from 10 x 20 ns trajectories, input features
= 207 C carbons, AE topology 621-100-5-100-621

Issue: dimension of bottleneck?
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Some perspectives
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Some perspectives

e Incorporating knowledge/information on the transition states?
@ compute mean square error with respect to another distribution?
@ add terms to the loss function? (e.g. related to MEP3)

¢ Incorporating dynamical information?

o time-lagged autoencoders and their variations'#

@ making use of the generator of the dynamics!®

e Better understanding autoencoders
@ choice of topology: mathematical analysis?
@ simple dimensionality reduction methods in the bottleneck (to allow
for free energy computations)

*Ramil/Boudier/Gorayeva/Marinica/Maillet, J. Chem. Theory Comput. (2022)
Chen/Sidky/Ferguson, J. Chem. Phys. (2019)
*Zhang/Li/Schiitte, J. Comput. Phys. (2022)
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Interest in interfaces between ML and MD?

Program March-May 2024 at University of Chicago

O & hyp imsi institute/activities/c

LONG PROGRAM

Materials Science + Data & Information

Data-Driven Materials Informatics
Statistical Methods and Mathematical Analysis

March 4 — May 24, 2024

Add to Google Calendar

Description Organizers Program Workshops Application

Description

Meaterials informatics is an emerging field defined by the use of simulation tools combined with methods from
data sciences and machine learning to better understand materials properies and design innovative materials.
The models which are considered cover an extremely wide range, from Schrdinger’s equation, which
describes matter at the (subjatomistic scale, 1o the equations of continuum mechanics. Mathematical sciences
play a key role in materials informatics, both to construct the databases used to train machine learning
algorithms (since these databases are made of reference simulation results), and to hamess them in order to
extract the most relevant information. The aim of this program is bring together a diverse scientific audience,
both between sclentic flelds (physical sciences, materlals sciences, biophysics, etc) and within mathematics
(mathematical modeling, numerical analysis, statistics and data analysis, etc), to make progress on key
questions of materials informatics.
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