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Electron hydrodynamics in graphene

= |n conductors, resistance arises because electrons collide with the
atomic nuclei of the crystal lattice.

= Graphene is a two-dimensional, stable allotrope of carbon that has
novel applications to the development of nanodevices (see Fig 1).

= Notably, it has been experimentally observed that in graphene, internal
collisions between electrons dominate and the electron system may
behave like a fluid [1].

= Objective: Develop analytical methods that can be used to help
experimentalists detect and control electron fluid behavior [2].

Figure 1. Structure of graphene. Graphene consists of a planar network of carbon
nuclei on which electrons can flow [Geim, Grigorieva, Nature, 2013].

,-6-—':“
'

Dipole Excitations: Geometry

Figure 2. Schematic of geometry. A vertical or horizontal electric dipole (indicated by
thick arrows) is placed at distance z; above an infinite graphene sheet [2].
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Project Goal

Explicitly solve Maxwell’s equations and Navier-Stokes equations for the
electron fluid to obtain the electromagnetic fields and hydrodynamic
modes produced by a horizontal dipole on a graphene sheet (see Fig 2).

Projected Maxwell-Navier-Stokes Equations

Maxwell’s Equations in 3 dimensions (outside graphene):
VxH;= fi‘”TgEj + %J 7 _ d(x)o(y)d(z — zp)ex(vertical)
VxE; =%H d(x)d(y)d(z — zp)eg(horizontal)

Linearized Navier-Stokes Equations for electron fluid in 2 dimensions
(on graphene):
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Effective Boundary Condition for Maxwell's Equations (on graphene):
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Surface current density:

j® = —engv

Methods

Results in Fourier-Bessel Representation

= We approach solving this PDE system by distinguishing two parts of
the solution:
= The scattered fields (or homogeneous solutions) are the general solutions to the
system in the absence of the dipole (but in the presence of the material).
= The primary fields (or particular solutions) are particular solutions to the system in
the absence of the material sheet (but in the presence of the dipole).

= To aid with solving the PDEs, we use the Fourier Transform in (z, y):

Flia) = fiez) = [ prze sy

= The Fourier Transform converts PDEs to algebraic systems and ODEs.

= Key Result: Taking the Fourier transform of the Navier-Stokes

equations gives the following Ohm's Law-type formula:
A~

j (k) = &(k; w)E (k)
where g(k;w) is a conductivity tensor.
= To solve for the fields explicitly, we invert the Fourier Transform:

FHf(k2)} = flr = 2/ / f(k, 2)e™ T dk,dk,

Evaluating such integrals requires tools from complex analysis,
including analytic function theory.
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Horizontal Dipole
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The hydrodynamic modes are given by the poles of the integrand:
Diffusive Mode

Plasmon mode

Conclusions

= The hydrodynamic modes are the same in both the vertical and
horizontal cases.

= However, preliminary examinations suggest that the strengths of the
modes are weaker for the horizontal dipole, though further numerics
are required to verify this.

References

[1] S.A. L. L. e.a. Bandurin, D.A. Fluidity onset in graphene. Nat Commun, 9(4533), 2018.

2] M. L. V. Andreeva, D. A. Bandurin and D. Margetis. Dipole excitation of collective modes in viscous
two-dimensional electron systems. Phys. Rev. B, 102(205411), 2020.

diom@umd.edu

kdas@hmc.edu


kdas@hmc.edu
diom@umd.edu

