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Electron hydrodynamics in graphene

In conductors, resistance arises because electrons collide with the

atomic nuclei of the crystal lattice.

Graphene is a two-dimensional, stable allotrope of carbon that has

novel applications to the development of nanodevices (see Fig 1).

Notably, it has been experimentally observed that in graphene, internal

collisions between electrons dominate and the electron system may

behave like a fluid [1].

Objective: Develop analytical methods that can be used to help

experimentalists detect and control electron fluid behavior [2].

Figure 1. Structure of graphene. Graphene consists of a planar network of carbon

nuclei on which electrons can flow [Geim, Grigorieva, Nature, 2013].

Dipole Excitations: Geometry

Figure 2. Schematic of geometry. A vertical or horizontal electric dipole (indicated by

thick arrows) is placed at distance z0 above an infinite graphene sheet [2].

Project Goal

Explicitly solve Maxwell’s equations and Navier-Stokes equations for the

electron fluid to obtain the electromagnetic fields and hydrodynamic

modes produced by a horizontal dipole on a graphene sheet (see Fig 2).

Projected Maxwell-Navier-Stokes Equations

Maxwell’s Equations in 3 dimensions (outside graphene):{
∇ × Hj = −iωε

c Ej + 4π
c J

∇ × Ej = iω
c Hj

J =

{
δ(x)δ(y)δ(z − z0)ez(vertical)
δ(x)δ(y)δ(z − z0)ex(horizontal)

Linearized Navier-Stokes Equations for electron fluid in 2 dimensions

(on graphene):−iωn + n0∇ · v = 0

−iωv = −s2∇n
n0

− (γ − η∇2)v + ζ∇(∇ · v) − (ωc − ηH∇2)v × ez −
eE‖
m

Effective Boundary Condition for Maxwell’s Equations (on graphene):{
(E2 − E1) × ez = 0
(H2 − H1) × ez = 4π

c js

Surface current density:

js = −en0v

Methods

We approach solving this PDE system by distinguishing two parts of
the solution:

The scattered fields (or homogeneous solutions) are the general solutions to the

system in the absence of the dipole (but in the presence of the material).

The primary fields (or particular solutions) are particular solutions to the system in

the absence of the material sheet (but in the presence of the dipole).

To aid with solving the PDEs, we use the Fourier Transform in (x, y):

F{f (r, z)} = f̂ (k, z) =
∫ ∞

−∞

∫ ∞

−∞
f (r, z)e−ik·rdxdy

The Fourier Transform converts PDEs to algebraic systems and ODEs.

Key Result: Taking the Fourier transform of the Navier-Stokes

equations gives the following Ohm’s Law-type formula:

ĵ
s(k) = σ̂(k; ω)Ê‖(k)

where σ̂(k; ω) is a conductivity tensor.
To solve for the fields explicitly, we invert the Fourier Transform:

F−1{f̂ (k, z)} = f (r, z) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
f̂ (k, z)eik·rdkxdky

Evaluating such integrals requires tools from complex analysis,

including analytic function theory.

Results in Fourier-Bessel Representation

Vertical Dipole

E1z(r, z) = i

ωε

∫ ∞

0

k3

β
J1(kr)

[
A(k) + D(k)

D(k)
e−β(z+z0) + e−β|z−z0|

]
dk

E2z(r, z) = i

ωε

∫ ∞

0
k3J1(kr) A(k)

βD(k)
eβ(z−z0)dk

Horizontal Dipole

E1z(r, φ, z) = i

ωε

∫ ∞

0
k2J1(kr)M(k) cos φ − E(k) sin φ

D(k)
e−β(z+z0)dk

+ i

ωε

∫ ∞

0
k2J1(kr)sgn(z − z0) cos(φ)e−β|z−z0|dk

E2z(r, φ, z) = i

ωε

∫ ∞

0
k2J1(kr)C(k) cos φ + E(k) sin φ

D(k)
eβ(z−z0)dk

The hydrodynamic modes are given by the poles of the integrand:

Diffusive Mode

kd(ω) '

√
iω − γ

η
+ ω2

c2 (ε − 1)

Plasmon mode

kpl(ω) ' ωε(ω + iγ)
D0

(
1 − iη

ω2(ω + iγ)ε2

D2
0

)

Conclusions

The hydrodynamic modes are the same in both the vertical and

horizontal cases.

However, preliminary examinations suggest that the strengths of the

modes are weaker for the horizontal dipole, though further numerics

are required to verify this.
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