FDense 3.67 INPUT -------------------- output after each group span4 2 [10,20] 10 BEGIN DEFINITIONS //func1 = t(4, 0001 1101 1110 0010) M = x[0] + x[1] A = x[0] + x[1] * x[2] F = t(1, 10) // F is the flip map on symbols // Below is the list of 32 span4 onto maps from // Hedlund-Appel-Welch which along with pre and post // composition with F generate all span4 onto maps // on two symbols and not linear in an end variable // We just run a few maps in the group here but in // practice would run many. 1 = t(4, 0000 1111 0010 1101) 2 = t(4, 0000 1111 0100 1011) 3 = t(4, 0001 1100 0011 1110) 4 = t(4, 0001 1110 0101 1010) 5 = t(4, 0010 1001 0110 1101) 6 = t(4, 0010 1101 0000 1111) 7 = t(4, 0011 0011 0110 0011) 8 = t(4, 0011 0011 0110 1100) 9 = t(4, 0011 0011 1001 0011) 10 = t(4, 0011 0011 1001 1100) 11 = t(4, 0011 0101 0011 1100) 12 = t(4, 0011 0101 1100 0011) 13 = t(4, 0011 0110 0011 0011) 14 = t(4, 0011 0110 1100 1100) 15 = t(4, 0011 1000 0111 1100) 16 = t(4, 0011 1001 0011 0011) 17 = t(4, 0011 1001 1100 1100) 18 = t(4, 0011 1010 0011 1100) 19 = t(4, 0011 1010 1100 0011) 20 = t(4, 0011 1100 0101 0011) 21 = t(4, 0011 1100 0101 1100) 22 = t(4, 0011 1100 1010 0011) 23 = t(4, 0011 1100 1010 1100) 24 = t(4, 0011 1110 0001 1100) 25 = t(4, 0100 1001 0110 1011) 26 = t(4, 0100 1011 0000 1111) 27 = t(4, 0101 1010 0001 1110) 28 = t(4, 0101 1010 0111 1000) 29 = t(4, 0110 1011 0100 1001) 30 = t(4, 0110 1101 0010 1001) // "30" above corrects the erroneous // t(4, 0111 1101 0010 1001) of HAW. 31 = t(4, 0111 1000 0101 1010) 32 = t(4, 0111 1100 0011 1000) BEGIN COMMANDS 1 2 F#1 F#2 A#1 A#2 //F#3 //F#4 //F#5 //F#6 //F#7 //F#8 //F#9 //F#10 //F#11 //F#12 //F#13 //F#14 //F#15 //F#16 //F#17 //F#18 //F#19 //F#20 //F#21 //F#22 //F#23 //F#24 //F#25 //F#26 //F#27 //F#28 //F#29 //F#30 //F#31 //F#32 -------------------- For m = 10 the following maps were found to have m-dense jointly periodic points of (not least) shift period k, for the following k: Map: 1 ---- 11 12 13 14 15 16 17 18 19 20 Map: 2 ---- 10 11 12 13 14 15 16 17 18 19 20 Map: F#1 ---- 11 12 13 14 15 16 17 18 19 20 Map: F#2 ---- 10 11 12 13 14 15 16 17 18 19 20 Map: A#1 ---- 19 20 Map: A#2 ---- 17 18 19