FDense 3.67 INPUT -------------------- output after each group span5 2 [10,20] 10 BEGIN DEFINITIONS //We test 10-denseness of jointly periodic points with //shift periods in [10,20] for some c.a. //These are the irregular span 5 maps of HAW described //in the Boyle-Lee paper. Again for the sample we only //run for a few c.a. and only to the modest shift period 20. 1 = t(5, 0001 0111 1110 1000 0001 0111 1111 0000) 2 = t(5, 0001 1011 0111 0100 1110 0100 1111 0000) 3 = t(5, 0010 0010 1111 0011 0010 1110 0000 1111) 4 = t(5, 0010 1001 0110 1101 0100 1001 0110 1011) 5 = t(5, 0010 1110 0000 1111 0010 1110 1111 0000) 6 = t(5, 0100 0111 0001 0111 1011 1000 0000 1111) 7 = t(5, 0100 0111 0100 1011 1000 1011 0100 1011) 8 = t(5, 0100 1011 1000 0111 0100 1011 0100 1011) 9 = t(5, 0100 1101 1011 0010 1000 1110 1011 0010) 10 = t(5, 0100 1101 1011 0010 1100 1100 1011 0010) 11 = t(5, 0100 1101 1101 0010 0011 0011 1101 0010) 12 = t(5, 0100 1101 1101 0010 0111 0001 1101 0010) 13 = t(5, 0100 1101 1101 0010 1111 0000 1101 0010) 14 = t(5, 0100 1101 1111 0000 0100 1101 1011 0010) 15 = t(5, 0110 0001 1010 1011 0110 0001 0110 0111) 16 = t(5, 0110 1000 0111 1001 0110 0001 1110 1001) 17 = t(5, 0110 1011 1100 0010 0100 1011 0001 1101) 18 = t(5, 0111 0001 1011 0010 0111 0001 1000 1110) 19 = t(5, 0111 0010 1011 0100 0111 0010 0111 1000) 20 = t(5, 0111 1000 0100 1011 0111 1000 0111 1000) 21 = t(5, 0111 1000 0100 1011 0111 1000 1011 0100) 22 = t(5, 0111 1000 0100 1011 0111 1000 1111 0000) 23 = t(5, 0111 1000 0100 1101 0111 1000 1000 1110) 24 = t(5, 0111 1011 1000 0100 0100 1011 0000 1111) 25 = t(5, 0111 1011 1100 0000 0100 1011 0000 1111) 26 = t(5, 0111 1011 1100 0000 0100 1011 0100 1011) BEGIN COMMANDS 1 2 3 //4 //5 //6 //7 //8 //9 //10 //11 //12 //13 //14 //15 //16 //17 //18 //19 //20 //21 //22 //23 //24 //25 //26 -------------------- For m = 10 the following maps were found to have m-dense jointly periodic points of (not least) shift period k, for the following k: Map: 1 ---- 18 19 20 Map: 2 ---- 19 Map: 3 ---- 17 18 19 20