1. Consider the three vectors $\bar{u}=\left[\begin{array}{c}-2 \\ 1\end{array}\right], \bar{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\bar{w}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) Show that \bar{u}, \bar{v} and \bar{w} are not linearly independent using the strict definition.
(b) Explain why any pair of these vectors is linearly independent.
(c) Give an example of a fourth vector \bar{x} which, when paired with any of \bar{u}, \bar{v} or \bar{w}, yields a pair which is linearly dependent.
2. Define

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & -4 & 1 \\
1 & 2 & -1
\end{array}\right]
$$

(a) Solve $A \bar{x}=\overline{0}$. Express your answer in parametric form.
(b) It is a fact that $\left[\begin{array}{c}-5 \\ 0 \\ 2\end{array}\right]$ is a solution to $A \bar{x}=\left[\begin{array}{c}-5 \\ 12 \\ -7\end{array}\right]$. Find all solutions to this equation. Express your answer in parametric form.
(c) Find some \bar{y} so that \bar{y} is not in the span of the columns of A and justify why it is not.
3. (a) Consider the transformation determined by the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
-1 & 2 & 1 & 0
\end{array}\right]
$$

Rewrite this transformation in the form $T\left(x_{1}, \ldots\right)=(\ldots)$ with as many x_{i} as necessary for the dimensions.
(b) Suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by first compressing by a factor of $\frac{1}{2}$ in the x_{1}-direction and then rotating 180° about the origin. Find the matrix for T and use this to find $T(-2,3)$.
4. (a) Show that the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2}, x_{2},-3 x_{1}\right)$ is a linear transformation.
(b) Suppose a linear transformation T corresponds to a 4×5 matrix. Explain why T is not one-to-one.
5. (a) Use the inverse of a matrix to solve the vector equation

$$
x_{1}\left[\begin{array}{c}
1.5 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{c}
-0.5 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

(b) Determine all values of h for which the following matrix is invertible.

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
2 & 0 & 4 \\
0 & 3 & h
\end{array}\right]
$$

