Polynomial approximation and higher derivatives

Suppose $f : I \to \mathbb{R}$, where I is an open interval and $x_0 \in I$, and suppose f is differentiable at x_0 . Then we can easily show

$$\lim_{x \to x_0} \frac{f(x) - (f(x_0) + f'(x_0)(x - x_0))}{x - x_0} = 0$$

Because $p_1(x) = f(x_0) + f'(x_0)(x - x_0)$ is the first Taylor polynomial of f at x_0 , we see a natural question, which is answered by the following result.

Theorem 0.1. Suppose n is a positive integer, I is an open interval containing $x_0, f: I \to \mathbb{R}, f^{(n-1)}$ exists on I and $f^{(n)}(x_0)$ exists. Let p_n be the nth Taylor polynomial of f at x_0 . Then

$$\lim_{x \to x_0} \frac{f(x) - p_n(x)}{(x - x_0)^n} = 0 .$$

Proof. For notational simplicity, we will verify just the onesided limit as $x \to x_0^+$. A very similar argument shows the limit from the left is also zero.

We prove the theorem by induction on n. For n = 1, we know the theorem is true. Now suppose it is true for a positive integer n - 1. We will show the theorem is then true for n.

Without loss of generality (after replacing f with $f - p_n$) we may assume $f^{(k)}(x_0) = 0$ for $0 \le k \le n$. It then holds that $f - p_n = f$. Also without loss of generality, we assume for simplicity that $x_0 = 0$.

Now suppose $\epsilon > 0$. Applying the induction hypothesis to f', we choose $\delta > 0$ such that $0 < |x| < \delta$ implies $|f'(x)| < \epsilon |x|^{n-1}$. Suppose $0 < x < \delta$. Given a positive integer M, split the interval [0, x] into M subintervals of equal length x/M. The *i*th subinterval $[x_{i-1}, x_i]$ is [(i-1)x/M, ix/M]. By the Mean Value theorem, in each subinterval $[x_{i-1}, x_i]$ there is a point x_i^* such that

$$|f(x_i) - f(x_{i-1})| = |f'(x_i^*)|(x/M)$$

Because $|f'(x_i^*)| \leq \epsilon(x_i^*)^{n-1} \leq \epsilon(ix/M)^{n-1}$ and

$$f(x) = f(x) - f(0) = f(x_M) - f(0)$$

= $\left(f(x_M) - f(x_{M-1}) + \left(f(x_{M-1}) - f(x_{M-2}) + \dots + \left(f(x_1) - f(x_0)\right)\right)$
= $\sum_{i=1}^{M} (f(x_i) - f(x_{i-1}))$

we have

$$|f(x)| = |\sum_{i=1}^{M} (f(x_i) - f(x_{i-1}))| \le \sum_{i=1}^{M} |(f(x_i) - f(x_{i-1}))| \le \sum_{i=1}^{M} (\epsilon(ix/M)^{n-1})(x/M).$$

We recognize this sum as a Riemann sum for the integral $\int_{t=0}^{x} \epsilon t^{n-1} dt$ using our regular partition $\{x_i : 0 \le i \le M\}$. Because $\int_{t=0}^{x} \epsilon t^{n-1} dt = \epsilon x^n/n$, we have

$$|f(x)| \leq \lim_{M \to \infty} \sum_{i=1}^{M} \left(\epsilon(ix/M)^{n-1} \right) (x/M)$$

$$|f(x)| \leq \epsilon x^n/n .$$

Therefore, $0 < x < \delta$ implies $|f(x)|/x^n \le \epsilon/n$. Because ϵ was arbitrary, this proves the theorem.

REMARK. There is an easier proof of the theorem under an additional hypothesis. A function is called C^k on an interval if its kth derivative is well defined and continuous on that interval.

Easier Proof assuming f is C^n on I.

As before we may assume $p_n = 0$ and $x_0 = 0$. By the Lagrange Remainder Theorem, given $x \in I$ and $x \neq 0$, we have a z between 0 and x such that

$$\frac{f(x) - p_{n-1}(x)}{x^n} = \frac{f^{(n)}(z)}{n!} x^n, \text{ and therefore} \\
\frac{f(x) - p_{n-1}(x)}{x^n} = \frac{f^{(n)}(z)}{n!}.$$

Because $p_n = 0 = p_{n-1}$, we can replace p_{n-1} above with p_n . Also, by assumption of continuity of $f^{(n)}$, and because $z \to 0$ as $x \to 0$, we then have

$$\lim_{x \to 0} \frac{f(x) - p_n(x)}{x^n} = \lim_{z \to 0} \frac{f^{(n)}(z)}{n!} = 0 .$$