Two views of continuity

Proposition F. Suppose f is a function from a subset D of \mathbb{R} into \mathbb{R}, and x is in the domain D of f. Then the following are equivalent.

1. If $\left(x_{n}\right)$ is a sequence from D and $\lim _{n} x_{n}=x$, then $\lim f\left(x_{n}\right)=f(x)$.
2. For every $\epsilon>0$, there exists $\delta>0$ such that for all w in D,

$$
|w-x|<\delta \Longrightarrow|f(w)-f(x)|<\epsilon .
$$

Definition. If f and x satisfy one (hence both) of the conditions above, then we say that f is continuous at the point x.

Definition. If f is continuous at every point in its domain, then we say that f is continuous.

For context we remark that there is another way (the most general way) to characterize a continuous function, using open sets, but we will not go into it here.

Now we prove Proposition F.

Proof for (2) \Longrightarrow (1).

Suppose $\left(x_{n}\right)$ is a sequence from D and $\lim _{n} x_{n}=x$. We must prove that $\lim f\left(x_{n}\right)=f(x)$. For this, suppose $\epsilon>0$. We must show there is an N such that $n \geq N$ implies $\left|f\left(x_{n}\right)-f(x)\right|<\epsilon$.
Since (2) holds, we have a $\delta>0$ such that $\left|x_{n}-x\right|<\delta$ implies $\left|f\left(x_{n}\right)-f(x)\right|<$ ϵ. Because $\lim _{n} x_{n}=x$, we have N such that $n \geq N \Longrightarrow\left|x_{n}-x\right|<\delta$. Combining the facts, we have as required that

$$
n \geq N \Longrightarrow\left|f\left(x_{n}\right)-f(x)\right|<\epsilon .
$$

Proof for (1) \Longrightarrow (2).

We will prove an equivalent statement: if (2) is false, then (1) is false. So suppose (2) is false. Then there is an $\epsilon>0$ such that there is no positive δ which guarantees that

$$
|w-x|<\delta \quad \Longrightarrow \quad|f(w)-f(x)|<\epsilon .
$$

For this ϵ, and for $n \in \mathbb{N}$, we can then pick x_{n} from D such that $\left|x_{n}-x\right|<1 / n$ and also $\left|f\left(x_{n}\right)-f(x)\right| \geq \epsilon$. But then, $\lim _{n} x_{n}=x$ and $\lim _{n} f\left(x_{n}\right) \neq f(x)$. Therefore (1) is false. QED

