Fall 2012 - Math 241

MATLAB Assignment #2 - Due Oct. 18

Differential calculus with Matlab. The diff command can be used to compute derivatives. You must always remember to declare the variable (*t* in the example below) as a symbolic variable first (we do that with the command sym below. You can also use syms as in the previous assignment).

>> t=sym('t','real')
>> f=t*sin(3*t^2)
>> diff(f)

You can also differentiate vector-valued functions. For instance, if

$$\vec{r}(t) = t\vec{i} + t\cos(t^2)\vec{k},$$

then you can compute $\vec{v}(t) = \vec{r}'(t)$ as follows:

>> r=[t, 0, t*cos(t²)] >> v=diff(r)

To compute the value $\vec{v}(2)$, you can use subs(v,2). The speed of the object at time t is given by the norm of \vec{v} . However, the command norm does not work with symbolic variable. So to compute $||\vec{v}(t)||$, we use sqrt(dot(v,v)).

Integral calculus with Matlab. Integrals are computed with the command int. For instance, int(r) computes an indefinite integral of \vec{r} . The command int(r,0,1) computes the definite integral over the interval [0,1].

Note that int attempts to find an exact formula. If that fails (and it will fail for complicated functions), you can use the command double to get a numerical result. Try to the following example:

>> t=sym('t', 'real')
>> g=exp(cos(t))
>> int(g,0,1)
>> double(int(g,0,1))

You can also compute the integral of vector valued functions. For instance, here is how to compute

$$\int_0^1 e^t \vec{i} + t^2 \vec{j} + \cos(t) \vec{k} \, dt$$

>> F=[exp(t),t^2,cos(t)]
>> int(F,0,1)

Plotting surfaces. The graph z = f(x, y) can be drawn with ezmesh. For instance, to draw the surface

 $z = e^x - y\sin(2x), \quad -5 \le x \le 2, \quad -2 \le y \le 2$

you would type

>> ezmesh('exp(x)-y*sin(2*x)',[-5 2 -2 2])

You can increase the resolution of the picture by increasing the number of grid points. For instance, try

>> ezmesh('exp(x)-y*sin(2*x)',[-5 2 -2 2],200)

Level sets. You can also plot some level sets of a function f(x, y) with the command ezcontour. Try for instance

```
>> ezcontour('x^2-y^2')
```

and make sure you understand the picture.

- **Problem 1** (a) Enter the vector-valued function $\vec{r}(t) = \left(\left(\frac{t}{\pi}\right) \sin(t), 1 \cos(t), \sin(t)\right)$ (use pi for π).
 - (b) Find the unit tangent vector $\vec{T}(\pi)$ to the curve traced out by $\vec{r}(t)$ at $t = \pi$.
 - (c) Find the unit normal vector $\vec{N}(\pi)$ to the curve at $t = \pi$.
 - (d) Using ezplot3 and quiver3, as shown in the first assignment, plot on the same graph the curve traced out by $\vec{r}(t)$ for $0 \le t \le 2\pi$, the unit tangent vector and the unit normal vector at the point $\vec{r}(\pi)$.
- **Problem 2** Let $\vec{r}(t) = (t^2 e^t, \sin(2t) t^6, -\ln(t)\cos(t))$ represent the position of a particle at time t > 0.
 - (a) Find the speed, velocity, and acceleration of the particle at time t = 1 (the command for $\ln(t)$ is $\log(t)$).
 - (b) Find the tangential and normal component of the acceleration at time t = 1.
- **Problem 3** Find the length of the curve parametrized by $\gamma(t) = (t \cos(t), t, t \sin(t))$ over the interval $0 \le t \le 4\pi$.

Problem 4 Let $f(x, y) = \cos x \sin y$.

- (a) Plot the graph z = f(x, y) over the domain $-5 \le x \le 5, -5 \le y \le 5$.
- (b) Plot some level curves of the function f over the same domain.
- **Problem 5** Plot the following quadrics:
 - (a) $z = 2x^2 y^2$, for $-1 \le x \le 1$, $-1 \le y \le 1$ (hyperbolic paraboloid).
 - (b) $z = x^2 + 3y^2$, for $-2 \le x \le 2$, $-1 \le y \le 1$ (elliptic paraboloid).
 - (c) $z^2 = x^2 + y^2 + 1$, for $-5 \le x \le 5$, $-5 \le y \le 5$ (hyperboloid of two sheets) **Hint**: Plot the graphs of $f(x, y) = \sqrt{x^2 + y^2 + 1}$ and $f(x, y) = -\sqrt{x^2 + y^2 + 1}$ on the same graph, using the **hold on** command.

Remember to use the command axis equal to get a better view.