Spring 2013 - Math 461

Midterm #2 - Solution

- 1. (a) i. True (such a matrix is invertible).
 - ii. False (only if $\vec{b} = \vec{0}$).
 - iii. True (definition of the kernel of the linear transformation).
 - iv. True (if A is not invertible, then $A\vec{x} = \vec{0}$ has a non trivial solution, so 0 is an eigenvalue of A).

(b) i. Rank(A) = 2 (number of pivot columns).
dim(Nul(A)) = 2 (number of free variables).
ii.
$$\begin{cases} \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \end{cases}$$
iii.
$$\vec{x} = \begin{bmatrix} -2x_2 - x_4 \\ x_2 \\ 3x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \text{ so } \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 3 \\ 1 \end{bmatrix} \right\}$$
is a basis for the null space of A.

2. (a) i. det(A) = 11 and det(-2A) =
$$(-2)^5 11$$
.
ii. det(A) $\neq 0$, so A is invertible and det(A⁻¹) = $\frac{1}{\det(A)} = \frac{1}{11}$

(b) The vectors are linearly dependent iff the matrix $[\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3]$ is not invertible, that is iff its determinant is zero:

$$\det([\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3]) = t^2 - 5t + 4 = (t-1)(t-4) = 0$$

So the vectors are linearly dependent iff t = 1 or t = 4.

3. (a) We have $\vec{p}=a+(a+b)t+bt^2=a(1+t)+b(t+t^2),$ so $H=\mathrm{Span}\{1+t,t+t^2\}$

in particular, H is a subspace since it is the span of some set of vectors.

In particular, the equation $A\vec{x} = 3\vec{x}$ has non trivial solutions, so 3 is an eigenvalue. The vectors in Nul(A - 3I) are of the form

$$\vec{x} = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
so $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis of Nul(A - 3I).

4. (a) i. We have $A\vec{v}_1 = -3\vec{v}_1$ and $A\vec{v}_2 = -2\vec{v}_2$. So \vec{v}_1 is a e-vector with e-value -3 and \vec{v}_2 is a e-vector with e-value -2. ii. $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}} = [\vec{v}_1 \ \vec{v}_2] = \begin{bmatrix} 3 & -2\\ 2 & -1 \end{bmatrix}$, $\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}} = \mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} -1 & 2\\ -2 & 3 \end{bmatrix}$ iii. $[\vec{x}]_{\mathcal{B}} = \mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}}\vec{x} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$ (b) We have $[\vec{p}_1]_{\mathcal{B}} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$, $[\vec{p}_2]_{\mathcal{B}} = \begin{bmatrix} 3\\ -5\\ 4 \end{bmatrix}$, $[\vec{p}_3]_{\mathcal{B}} = \begin{bmatrix} 0\\ 2\\ 3 \end{bmatrix}$, and $\begin{bmatrix} 1 & 3 & 0\\ -2 & -5 & 2\\ 1 & 4 & 3 \end{bmatrix} \sim I_3$

so $\{\vec{p_1}, \vec{p_2}, \vec{p_3}\}$ is linearly independent. Since dim $(P_2(\mathbb{R})) = 3$, it is a basis.