$\begin{array}{c} {\bf Math} \ {\bf 461} \\ {\bf Practice} \ {\bf exam} \ \# 3 \ - \ {\bf Solution} \end{array}$

- 1. (a) False (the zero matrix is diagonalizable)
 - (b) False (the identity matrix is diagonalizable but its only e-value is 1)
 - (c) True (theorem)
 - (d) True (theorem this is the normal equation)

2. (a)
$$A\vec{v}_1 = -9\vec{v}_1$$
, so $\lambda_1 = -9$.
(b) $A - 2I$ has null space $\text{Span} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\3\\1 \end{bmatrix} \right\}$
(c) $P = \begin{bmatrix} -1 & 1 & 0\\-2 & 0 & 3\\3 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} -9 & 0 & 0\\0 & 2 & 0\\0 & 0 & 2 \end{bmatrix}$.

3. (a)
$$\lambda_1 = 1 + i\sqrt{3}, v_1 = \begin{bmatrix} 1 \\ -2 + i\sqrt{3} \end{bmatrix}$$

 $\lambda_2 = 1 - i\sqrt{3}, v_2 = \begin{bmatrix} 1 \\ -2 - i\sqrt{3} \end{bmatrix}$
(b) $P = \begin{bmatrix} 1 & 0 \\ -2 & -\sqrt{3} \end{bmatrix}, C = \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$
(c) $r = 2, \varphi = \frac{\pi}{3}.$

4.
$$A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$$
. Eigenvalues 3 and -2, so Q is indefinite.

5.
$$A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$$
 and $A^T \vec{b} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$, so $\vec{x_0} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$
6. $\vec{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}$ $\vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1/2 \\ 1/2 \end{bmatrix}$
7. (a) $\operatorname{Proj}_L(\vec{x}) = \begin{bmatrix} -1/2 \\ 1/2 \\ 0 \end{bmatrix}$
(b) $\operatorname{Proj}_W(\vec{x}) = \vec{x} - \operatorname{Proj}_L(\vec{x}) = \begin{bmatrix} 3/2 \\ 3/2 \\ 3 \end{bmatrix}$