Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers

Homework \#10 - Due Monday Nov. 12th

1. (20pts) Find the solution of the following IBVP:

$$
\begin{aligned}
& u_{t t}-4 u_{x x}=\cos (t) \quad 0<x<\infty, \quad t>0 \\
& u(x, 0)=\sin (x), \quad u_{t}(x, 0)=0, \\
& u(0, t)=\sin (t) .
\end{aligned}
$$

2. (30pts) Using the reflection method (with an even reflection), find a formula for the solution of the Neumann problem for the wave equation on the half-line:

$$
\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0 & 0<x<\infty, t>0 \\
u(x, 0)=\phi(x), & u_{t}(x, 0)=\psi(x) \\
u_{x}(0, t)=0
\end{array}
$$

3. (30pts) Consider the diffusion equation $u_{t}-k u_{x x}=0$ on $(0, L)$ with Robin boundary conditions $u_{x}(0, t)-a_{0} u(0, t)=0$ and $u_{x}(L, t)+a_{L} u(L, t)=0$. If $a_{0}>0$ and $a_{L}>0$, use the energy method to show that the endpoints contribute to the decrease of the energy $\int_{0}^{L} u(x, t)^{2} d x$.
4. (20pts) Let u and v be such that

$$
u_{t}-u_{x x}=f \quad \text { for } 0<x<L, t>0
$$

and

$$
v_{t}-v_{x x}=g \quad \text { for } 0<x<L, t>0
$$

with $f(x, t) \leq g(x, t)$ for all x, t, and with $u \leq v$ at $x=0, x=L$ and $t=0$. Prove that $u(x, t) \leq v(x, t)$ for $x \in[0, L], t>0$.

