Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers

Homework \#13 - Not collected

1. Find the solution of $\Delta u=0$ in the disk of radius 1 , satisfying $u=2 \sin \theta-\sin (3 \theta)$ on the boundary.
2. Consider a domain Ω obtained by taking a circular sector with angle α and radius a and cutting out a smaller circular sector of radius b :

Find the solution of the following BVP in Ω :

$$
\left\{\begin{array}{lll}
\Delta u=0 & \text { in } \Omega \\
u(r, 0)=0 & \text { for } b<r<a, & u(r, \alpha)=0 \quad \text { for } b<r<a \\
u(b, \theta)=0 & \text { for } 0<\theta<\alpha, & u(a, \theta)=f(\theta) \quad \text { for } 0<\theta<\alpha
\end{array}\right.
$$

3. Let $\Omega=\left\{(x, y) ; 1<x^{2}+y^{2}<4\right\}$. Find u such that

$$
\Delta u=0 \text { in } \Omega
$$

$$
u=0 \text { on }\left\{(x, y) ; x^{2}+y^{2}=1\right\}
$$

$$
u=1 \text { on }\left\{(x, y) ; x^{2}+y^{2}=4\right\} .
$$

4. Let Ω be the half disk $\Omega=\left\{(x, y) ; x^{2}+y^{2} \leq 4, y>0\right\}$. Find u such that

$$
\begin{gathered}
\Delta u=0 \text { in } \Omega \\
u=0 \text { on }\{(x, y) ; y=0,-2<x<2\} \\
u=f \text { on }\left\{(x, y) ; x^{2}+y^{2}=4, y>0\right\} .
\end{gathered}
$$

for some function f.

