Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers
Homework \#3 - Due Monday Sept. 24

1. (25pt) Consider waves in a resistant medium that satisfy the problem

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=-r u_{t} \quad 0<x<L, \quad t>0 \\
& u(0, t)=0, \quad u(L, t)=0
\end{aligned}
$$

where r is a constant $0<r<2 \pi c / L$. Use the separation of variables method to find a series solution of this boundary value problem.
2. (a) (25pt) Find the values of λ for which the following boundary value problem has non trivial solutions:

$$
X^{\prime \prime}+\lambda X=0 \quad \text { for } 0<x<1, \quad X(0)=0, \quad X^{\prime}(1)=0 .
$$

For each such λ, find the corresponding solutions $X(x)$.
(b) (25pt) Use the separation of variables method and your answer to the question above to find the solution of the following mixed boundary problem:

$$
\begin{aligned}
& u_{t}-k u_{x x}=0 \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u_{x}(1, t)=0 \\
& u(x, 0)=\sin \left(\frac{3 \pi}{2} x\right)-2 \sin \left(\frac{5 \pi}{2} x\right)
\end{aligned}
$$

3. (25pt) Find the eigenvalues graphically for the boundary problem

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0 \quad 0<x<L \\
X(0)=0 \quad X^{\prime}(L)+X(L)=0
\end{gathered}
$$

