Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers
Homework \#5 - Due Monday Oct. 8

1. (20pt) For each of the following functions, state whether it is even or odd or periodic. If periodic, what is the smallest period?
(a) $\tan (a x)(a>0)$
(b) $\sin \left(x^{2}\right)$
(c) e^{-x}
(d) x^{m} ($m=$ integer $)$
(e) $\frac{\sin (x)}{2+\cos (x)}$
2. (30) Compute the full Fourier series of the function $f(x)=|x|$ on the interval $(-L, L)$. Sketch the function to which the Fourier series converges on the interval $(-3 L, 3 L)$.
3. (25pt)
(a) Let $\phi(x)$ be a continuous function on $(0, L)$. Under what conditions is its odd extension also a continuous function?
(b) Same as part (a) for the even extension.
4. (25pt) We saw in Homework $\# 3$ that the boundary conditions $X(0)=0$, $X^{\prime}(1)=0$ lead to the eigenfunctions

$$
X_{n}(x)=\sin \left(\left(n+\frac{1}{2}\right) \pi x\right) \quad n=0,1,2, \ldots
$$

Assuming that a function $\phi(x)$ defined on $(0,1)$ can be written as

$$
\phi(x)=\sum_{n=0}^{\infty} c_{n} \sin \left(\left(n+\frac{1}{2}\right) \pi x\right)
$$

find a formula for the coefficient c_{n} as an integral of ϕ.

