Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers
Homework \#6 - Due Monday Oct. 15

1. (30pts) Let γ_{n} be a sequence of constants tending to ∞. Let $f_{n}(x)$ be a sequence of functions defined as follows:
$f_{n}(1 / 2)=0$
$f_{n}(x)=\gamma_{n}$ in the interval $\left[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}\right)$
$f_{n}(x)=-\gamma_{n}$ in the interval $\left(\frac{1}{2}, \frac{1}{2}+\frac{1}{n}\right]$
$f_{n}(x)=0$ elsewhere.
Show that:
(a) $f_{n}(x)$ converges to 0 pointwise.
(b) The convergence is not uniform.
(c) $f_{n}(x)$ converges to 0 in the L^{2} sense if $\gamma_{n}=n^{1 / 3}$.
(d) $f(x)$ does not converge in the L^{2} sense if $\gamma_{n}=n$.
2. (30pts) Let

$$
\phi(x)= \begin{cases}-1-x & \text { for }-1<x<0 \\ 1-x & \text { for } 0<x<1\end{cases}
$$

(a) Find the full Fourier series of $\phi(x)$ in the interval $(-1,1)$.
(b) Does it converge in the mean square sense?
(c) Does it converge pointwise?
(d) Does it converge uniformly to $\phi(x)$ in the interval $(-1,1)$?
3. (20pts) Let $f(x)=\cosh (x),-\pi \leq x \leq \pi$.
(a) Find the full Fourier series of f (recall that $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$).
(b) For which values of x does the Fourier series of f converges to f ?
(c) Use (b) to evaluate the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$.
4. (20pts) Find the solution of the following IBVP:

$$
\begin{array}{lll}
u_{t t}-u_{x x}=0 & 0<x<1 \quad t>0 \\
u(0, t)=0, \quad u(1, t)=0 & \\
u(x, 0)=x, \quad u_{t}(x, 0)=1 &
\end{array}
$$

