Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers

Homework #6 - Due Monday Oct. 15

1. (30pts) Let γ_n be a sequence of constants tending to ∞ . Let $f_n(x)$ be a sequence of functions defined as follows:

$$f_n(1/2) = 0$$

 $f_n(x) = \gamma_n$ in the interval $\left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2}\right)$

 $f_n(x) = -\gamma_n$ in the interval $(\frac{1}{2},\frac{1}{2}+\frac{1}{n}]$

 $f_n(x) = 0$ elsewhere.

Show that:

- (a) $f_n(x)$ converges to 0 pointwise.
- (b) The convergence is not uniform.
- (c) $f_n(x)$ converges to 0 in the L^2 sense if $\gamma_n = n^{1/3}$.
- (d) f(x) does not converge in the L^2 sense if $\gamma_n = n$.
- 2. (30pts) Let

$$\phi(x) = \begin{cases} -1 - x & \text{for } -1 < x < 0 \\ 1 - x & \text{for } 0 < x < 1. \end{cases}$$

- (a) Find the full Fourier series of $\phi(x)$ in the interval (-1,1).
- (b) Does it converge in the mean square sense?
- (c) Does it converge pointwise?
- (d) Does it converge uniformly to $\phi(x)$ in the interval (-1,1)?
- 3. (20pts) Let $f(x) = \cosh(x), -\pi \le x \le \pi$.
 - (a) Find the full Fourier series of f (recall that $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$).
 - (b) For which values of x does the Fourier series of f converges to f?
 - (c) Use (b) to evaluate the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$.
- 4. (20pts) Find the solution of the following IBVP:

$$u_{tt} - u_{xx} = 0$$
 $0 < x < 1$ $t > 0$
 $u(0,t) = 0$, $u(1,t) = 0$
 $u(x,0) = x$, $u_t(x,0) = 1$