Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers
Homework \#7-Due Monday Oct. 22

1. (25pts) Find the solution of the following non-homogeneous IBVP:

$$
\begin{aligned}
& u_{t t}-u_{x x}=t \sin (\pi x) \quad 0<x<1 \quad t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \\
& u(x, 0)=x, \quad u_{t}(x, 0)=0
\end{aligned}
$$

2. (25pts) Find the solution of the following non-homogeneous IBVP:

$$
\begin{aligned}
& u_{t}-u_{x x}=0 \quad 0<x<1 \quad t>0 \\
& u(0, t)=t, \quad u(1, t)=0 \\
& u(x, 0)=x
\end{aligned}
$$

3. (25pts) Find d'Alembert's solution for the following wave equation problem on the whole line:

$$
\begin{array}{lll}
u_{t t}-u_{x x}=0 & -\infty<x<\infty & t>0 \\
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=0 &
\end{array}
$$

where $\phi(x)=\left\{\begin{array}{ll}1 & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$. Sketch the solution for $t=0, t=1 / 2$, $t=1, t=2$.
4. (25pts) Solve

$$
u_{x x}-3 u_{x t}-4 u_{t t}=0, \quad-\infty<x<\infty \quad t>0
$$

with initial conditions

$$
u(x, 0)=x^{2}, \quad u_{t}(x, 0)=0 .
$$

(Hint: Factor the operator as we did for the wave equation and show that the general solution of the PDE is $f(4 x+t)+g(x-t)$.)

