Fall 2012 - Math 462 Partial Differential Equations for Scientists and Engineers Homework #7 - Due Monday Oct. 22

1. (25pts) Find the solution of the following non-homogeneous IBVP:

$$u_{tt} - u_{xx} = t \sin(\pi x) \qquad 0 < x < 1 \quad t > 0$$

$$u(0, t) = 0, \quad u(1, t) = 0$$

$$u(x, 0) = x, \quad u_t(x, 0) = 0$$

2. (25pts) Find the solution of the following non-homogeneous IBVP:

$$u_t - u_{xx} = 0$$
 $0 < x < 1$ $t > 0$
 $u(0,t) = t$, $u(1,t) = 0$
 $u(x,0) = x$,

3. (25pts) Find d'Alembert's solution for the following wave equation problem on the whole line:

$$u_{tt} - u_{xx} = 0$$
 $-\infty < x < \infty$ $t > 0$
 $u(x, 0) = \phi(x), \quad u_t(x, 0) = 0$

where $\phi(x) = \begin{cases} 1 & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$. Sketch the solution for t = 0, t = 1/2, t = 1, t = 2.

4. (25pts) Solve

$$u_{xx} - 3u_{xt} - 4u_{tt} = 0, \quad -\infty < x < \infty \quad t > 0$$

with initial conditions

$$u(x,0) = x^2$$
, $u_t(x,0) = 0$.

(Hint: Factor the operator as we did for the wave equation and show that the general solution of the PDE is f(4x + t) + g(x - t).)