Fall 2012 - Math 462

Partial Differential Equations for Scientists and Engineers
Homework \#8 - Due Monday Oct. 29

1. (15pts) Solve the following initial value problem:

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \quad \text { for }-\infty<x<+\infty, t>0 \\
& u(x, 0)=0 \quad \text { for all } x \\
& u_{t}(x, 0)=\frac{1}{1+x^{2}} \quad \text { for all } x
\end{aligned}
$$

2. (15pts) Solve the following initial value problem:

$$
\begin{aligned}
& u_{t t}-25 u_{x x}=0 \quad \text { for }-\infty<x<+\infty, t>0 \\
& u(x, 0)=x^{2} \\
& \text { for all } x \\
& u_{t}(x, 0)=3 \\
& \text { for all } x
\end{aligned}
$$

3. (20pts) The midpoint of a piano string of tension T, density ρ (we recall the formula $c=\sqrt{T / \rho}$) and length ℓ is hit by a hammer whose head diameter is $2 a$. A flea is sitting on the string at a distance $\ell / 4$ from one end. How long does it take for the disturbance to reach the flea? (assuming $a<\ell / 4$).
4. (20pts) Consider the damped string equation:

$$
u_{t t}-c^{2} u_{x x}+\gamma u_{t}=0 .
$$

Show that the total energy decreases.
5. (30pts) Let $u(x, t)$ be the solution of the following wave equation on the halfline:

$$
\begin{aligned}
& u_{t t}-u_{x x}=0 \quad 0<x<\infty, t>0 \\
& u(x, 0)=\phi(x) \\
& u_{t}(x, 0)=0 \\
& u(0, t)=0
\end{aligned}
$$

with ϕ given by:

Sketch $u(x, t)$ for $t=1$ and $t=2$. Describe the behavior of u as t increases.

