Fall 2009 - Math 463 Section 0201 Complex Variables for Scientists and Engineers Homework #10 - Due Tuesday December 1st in class

1. Expand the given function in a Laurent series in the given annular domain

(a)
$$f(z) = \frac{\cos z}{z}, \ 0 < |z|$$

(b) $f(z) = \frac{e^z}{z-1}, \ 0 < |z-1|$
(c) $f(z) = z \cos \frac{1}{z}, \ 0 < |z|$

- 2. Expand the function $f(z) = \frac{1}{z(z-3)}$ in a Laurent series in the given annular domain
 - (a) 0 < |z| < 3(b) 0 < |z - 3| < 3(c) 1 < |z - 4| < 4
- 3. Expand the function $f(z) = \frac{1}{z(z-1)^2}$ in a Laurent series in the annular domain |z| > 1.
- 4. Use an appropriate Laurent series to find the indicated residue

(a)
$$f(z) = \frac{4z - 6}{z(2 - z)}$$
, $\operatorname{Res}_{z=0} f(z)$
(b) $f(z) = (z + 3)^2 \sin\left(\frac{2}{z+3}\right)$, $\operatorname{Res}_{z=-3} f(z)$
(c) $f(z) = e^{-2/z^2}$, $\operatorname{Res}_{z=0} f(z)$

5. Determine the order of the poles for the given function

(a)
$$f(z) = 5 - \frac{6}{z^2}$$

(b) $f(z) = \frac{e^z - 1}{z^5}$

6. Use any method to find the residue at each pole of the given function

(a)
$$f(z) = \frac{z}{z^2 + 16}$$

(b) $f(z) = \frac{\cos z}{z^2 (z - \pi)^3}$

7. Show that z = 0 is a removable singularity of the function $f(z) = \frac{e^{2z} - 1}{z}$.

- 8. Use Cauchy's residue theorem to evaluate the given integral
 - (a) $\int_C \frac{1}{(z-1)(z+2)^2} dz$ where C is the contour |z| = 3/2(b) $\int_C \frac{1}{(z-1)(z+2)^2} dz$ where C is the contour |z| = 3(c) $\int_C z^3 e^{-1/z^2} dz$ where C is the contour |z+i| = 2