Fall 2009 - Math 463 Section 0201 Complex Variables for Scientists and Engineers Homework #2 - Due Thursday September 17th in class

1. Give the modulus, the principal argument, the real part and imaginary part of the following complex numbers:

$$(2-2i)^3$$
, $(4i)^{-3}$, $\frac{-2}{1-\sqrt{3}i}$

- 2. Let $\omega_3 = e^{i\frac{2\pi}{3}}$ and define $f(z) = \omega_3 z$. What type of geometric transformation is f (find |f(z)| and $\arg(f(z))$ in terms of |z| and $\arg(z)$?
- 3. Describe and sketch the set of points determined by the following conditions (one graph for each):
 - (a) $|z 3i| \ge 1$
 - (b) $z \neq 0$ and $-\pi < \operatorname{Arg}(z) < \pi$
 - (c) $\operatorname{Re}(z) < 1/2$
 - (d) Im(z) = 1
- 4. Which sets in Exercise 3 are open? Which sets are closed?
- 5. For each set in Exercise 3, describe the interior, the closure and the boundary.
- 6. For each of the following functions, describe the domain of definition:

$$f(z) = \operatorname{Arg}(z^{-1}), \quad f(z) = \frac{1}{z^2 + 1}, \quad f(z) = \frac{1}{|z|^2 + 1}, \quad f(z) = \frac{z}{z + \overline{z}}$$

- 7. Write the function $f(z) = z^2 + z + 1$ in the form f(z) = u(x, y) + iv(x, y).
- 8. Suppose that $f(x + iy) = x^2 y + ixy$. Write f(z) in terms of z (Hint: use the relations $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$)
- 9. Write the function $f(z) = \frac{z}{\overline{z}}$ in the form $f(z) = u(r, \theta) + iv(r, \theta)$.
- 10. Show that the line 2y = x is mapped onto a spiral under the transformation $f(z) = e^{z}$.
- 11. Sketch the region onto which the sector $r \leq 1$, $0 \leq \theta \leq \pi/4$ is mapped by the transformation $f(z) = z^2$.