Fall 2009 - Math 463 Section 0201 Complex Variables for Scientists and Engineers Homework #3 - Due Thursday September 24th in class

- 1. Sketch the region onto which the set of points satisfying $1 \leq \text{Re}(z) \leq 2, 1 \leq \text{Im}(z) \leq 2$ is mapped by the transformation $f(z) = e^{z}$.
- 2. We examine some properties of the exponential function
 - (a) Are there any complex number z such that $e^z = 0$? (justify your answer)
 - (b) Prove that $e^{\overline{z}} = \overline{e^z}$.
 - (c) What can be said about z if $|e^{-z}| < 1$?
- 3. For each of the following, find the image of S under the transformation w = f(z).
 - (a) f(z) = iz; S is the circle |z 1| = 2.
 - (b) f(z) = (1+i)z; S is the line y = 2x + 1.
 - (c) f(z) = 1/z; S is the circle |z| = 2.
- 4. Use parametrization to find the image of the circle $|z z_0| = R$ under the transformation f(z) = iz 2.
- 5. Show that the image of the vertical line $\operatorname{Re}(z) = 1$ under the transformation f(z) = 1/z is a circle of radius 1/2, centered at $z_0 = 1/2$.
- 6. Use the properties of limits to compute the following

(a)
$$\lim_{z \to 2-i} (z^2 - z)$$

(b)
$$\lim_{z \to 1+i} \frac{z - \overline{z}}{z + \overline{z}}$$

(c)
$$\lim_{z \to 2+i} \frac{z^2 - (2+i)^2}{z - (2+i)}$$

(d)
$$\lim_{z \to e^{i\pi/4}} \left(z + \frac{1}{z}\right)$$

7. Consider the limit $\lim_{z \to 0} \left(\frac{\overline{z}}{z}\right)^2$

- (a) What value does the limit approach as z approaches 0 along the real axis?
- (b) What value does the limit approach as z approaches 0 along the imaginary axis?
- (c) Does (a) and (b) implies that $\lim_{z\to 0} \left(\frac{\overline{z}}{z}\right)^2$ exists? Explain.
- (d) What value does the limit approach as z approaches 0 along the line y = x? What can you now say about $\lim_{z \to 0} \left(\frac{\overline{z}}{z}\right)^2$.

8. Compute the following limits

(a)
$$\lim_{z \to \infty} \frac{z^2 + iz - 2}{(1 + 2i)z^2}$$

(b) $\lim_{z \to i} \frac{z^2 - 1}{z^2 + 1}$

9. For each of the following, show that the function is continuous at the given point

(a)
$$f(z) = z^3 - \frac{1}{z}; z_0 = 3i$$

(b) $f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & |z| \neq 1\\ 3, & |z| = 1 \end{cases}; z_0 = 1$

10. Show that the function $f(z) = \operatorname{Arg}(z)$ is discontinuous at z = -1.