Fall 2009 - Math 463 Section 0201 Complex Variables for Scientists and Engineers Homework #6 - Due Thursday October 22nd in class

1. Compute the following integral:

(a)
$$\int_{0}^{2} 3t^{2} - it + 4i dt$$

(b) $\int_{0}^{\pi} e^{(1+i)t} dt$
(c) $\int_{0}^{\pi/2} i\sin(it) dt$

2. Let w(t) be a continuous complex valued function defined on an interval $-a \le t \le a$. Suppose that w is even (that is w(-t) = w(t)). Show that

$$\int_{-a}^{a} w(t) \, dt = 2 \int_{0}^{a} w(t) \, dt$$

3. (a) Sketch the arc described by

$$z(t) = \begin{cases} t & 0 \le t \le 1\\ 1+i(t-1) & 1 < t \le 2\\ (1+i)(t-1) & 2 < t \le 3 \end{cases}$$

- (b) Is this arc simple? Is it a Jordan curve?
- (c) Is this arc smooth? Is it a contour?
- 4. Find a parametrization of the following simple closed arcs:

5. Evaluate the given integral along the indicated contour

(a)
$$\int_C (z+3) dz$$
, where C is $z(t) = 2t + i(4t-1), 1 \le t \le 3$.
(b) $\int_C (2\overline{z} - z) dz$, where C is $z(t) = -t + i(t^2 + 2), 0 \le t \le 2$.
(c) $\int_C \operatorname{Re}(z) dz$, where C the circle $|z| = 1$.

- (d) $\int_C 2x iy \, dz$, where C the lower half of the circle |z| = 1 from z = -1 to z = 1.
- 6. Evaluate the given integral along the indicated contour
 - (a) $\int_C e^z dz$ where C is the polygonal path consisting of the line segments from z = 0 to z = 2 and from z = 2 to $z = 1 + \pi i$.
 - (b) $\int_C 3z^{1/2} dz$ where $z^{1/2}$ is the principal branch of the square root function and C is the line segment between $z_1 = 1$ and $z_2 = 9i$.
 - (c) $\int_C \frac{z+1}{z} dz$, where C the **right** half of the circle |z| = 1 from z = -i to z = i.
 - (d) $\int_C \frac{1}{z} dz$ where C the **left** half of the circle |z| = 1 from z = -i to z = i
- 7. If a contour C has a parametric representation z(t), $a \le t \le b$, then -C has parametric representation z(-t), $-b \le t \le -a$. Using the definition of the contour integral, show that

$$\int_C f(z) \, dz = - \int_{-C} f(z) \, dz$$

- 8. Find an upper bound for the modulus of the given integrals
 - (a) $\int_C (z^2 + 4) dz$ where C is the line segment from z = 0 to z = 1 + i. (b) $\int_C \frac{1}{z^2 - 2i} dz$ where C is the right half of the circle |z| = 3 from -3i to z = 3i.