Fall 2009 - Math 463 Section 0201 Complex Variables for Scientists and Engineers

Homework #8 - Due Thursday November 5th in class

- 1. Evaluate the following complex integrals (all simple closed contours are oriented positively)
 - (a) $\int_C ze^z dz$ where C is the circle |z-i|=1.
 - (b) $\int_C \frac{ze^z}{(z-i)^2} dz$ where C is circle |z|=2.
 - (c) $\int_C e^z dz$ where C is the straight line from -i to 2+i.
 - (d) $\int_C \frac{1}{z^2(z^2+1)} dz$ where C is the circle $|z-i| = \frac{3}{2}$.
 - (e) $\int_C x iy^2 dz$ where C is the straight line from 0 to 1 + i.
 - (f) $\int_C \left(\frac{e^{2iz}}{z^4} + \frac{z^4}{(z-i)^3} \right) dz$ where C is the circle |z| = 6.
- 2. Evaluate the integral

$$\int_C \frac{3z+1}{z(z-2)^2} \, dz$$

where C is the following figure-eight contour:

- 3. Find the limit (if it exists) of the following sequences:
 - (a) $z_n = \frac{3+ni}{n+2ni}$ (b) $z_n = 5i^n$

 - (c) $z_n = \left(\frac{1+i}{4}\right)^n$ (Hint: You can use polar coordinates).
- 4. Determine whether the given series is convergent or divergent. If convergent, find its sum.
 - (a) $\sum_{n=0}^{\infty} (1-i)^n$
 - (b) $\sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^n$
 - (c) $\sum_{n=0}^{\infty} \frac{1}{2} i^n$
 - (d) $\sum_{n=0}^{\infty} 3 \left(\frac{2}{1+2i} \right)^n$