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Abstract. In this paper, we introduce and analyze a mechanical model for tumor growth that
takes into account the life cycle of a tumor cell. The underlying process for tumor growth is
the same as in classical mechanical models: The spatial expansion of the tumor is driven by the
proliferation of the cells (mitosis) which is only limited by the pressure inside the tissue. The
natural incompressibility of the cells, which leads to a movement of the cells away from regions
of high pressure, is taken into account via a nonlinear Darcy’s law. Compared to similar models
studied recently, we include an additional variable, which represents the age of the cells. The
various phases of the life of a cell (growth, mitosis and death) are then dependent on this age
variable.

We prove the existence of weak solutions and investigate their behavior numerically, focusing
on the age distribution of the cells inside the tumor, the convergence to traveling wave solutions
and the existence of a threshold for the death rate for expansion/regression of the tumor.

Keywords: Tumor growth, Age-structured model, Nonlinear Darcy’s law, Cross-diffusion,
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1. Introduction

1.1. An age-structured mechanical model. Numerous mathematical models for tumor
growth have been developed and studied. Typically such models take into account several
key mechanisms of tumor invasion, such as competition for space (with other cancer cells as
well as with healthy cells), the availability of nutrients, phenotypic traits that might affect a
cell’s behavior, etc. In this paper, we focus on the simplest type of mechanical models in which
the growth of the tumor is driven by the proliferation of the cells, which is only limited by
the pressure inside the tissue, and by Darcy’s law, which describes the movement of the cells
away from regions of high pressure [14, 26, 25, 7, 17]. A classical model, introduced in [4] (see
also [2, 3, 5]) and studied for example in [21, 19, 10, 6, 20] models the evolution of the cell
population distribution function ρ(x, t) by the nonlinear diffusion equation

(1.1) ∂tρ− div (ρ∇p) = ρF (p), p =
m

m− 1

(
ρ

ρM

)m−1

where the growth rate F (p) is a decreasing function of the pressure which vanishes for some
p = pM (this maximal pressure pM is called the homeostatic pressure). When m � 1, the
pressure is small when ρ < ρM and large when ρ > ρM . If each cells has a fixed finite volume,
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this density ρM represents the maximal packing density of cells. In what follows, we take
ρM = 1 (to simplify the notations) and we fix m > 1.

The main object of this paper is a mechanical model for tumor growth which is based on the
same simple considerations as (1.1), but which takes into account the life cycle of the cancer
cells. For our purpose, the cell’s life cycle will be assumed to consist of two distinct phases: In
the first phase, the so-called interphase, the cell grows and copies its genetic material. During
the second phase, the mitotic phase, it splits into two daughter cells which can then start the
cycle from the beginning. We thus associate an age to each individual cell, denoted by θ ≥ 0,
which we define for now as the time since its last mitosis. We then introduce the cell distribution
function n(x, θ, t) which can be interpreted as the probability of finding a cell of age θ ≥ 0 at
a position x ∈ Rd. The evolution of this distribution function under pressure forces and cell
duplication is described by the following boundary value problem:

(1.2)


∂tn+ ∂θn− div x(n∇xp) = −ν(θ, p)n− µ(θ)n x ∈ Rd, θ > 0, t > 0

n(x, 0, t) = 2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ x ∈ Rd, t > 0

n(x, θ, 0) = nin(x, θ) x ∈ Rd, θ > 0.

We note the presence of the term ∂θn, which accounts for the aging of a cell, and the coefficient
ν, which can be interpreted as the probability that a given cell enters its mitotic phase: That
cell is then lost (the term −νn in the right hand side of the first equation), but two new cells,
of age θ = 0, are created (which gives rise to the boundary condition in (1.2)). In general,
ν depends on both the age of the cell θ and the local pressure p = p(x, t) (we note that in
experiments, there appears to be a lot of variability in the typical time between two mitosis
events [13]). Pressure-limited proliferation corresponds to the assumptions

(1.3) ∂pν(θ, p) < 0, ν(θ, pM ) = 0.

The coefficient µ(θ) denotes the death rate, which can be taken to be constant or more generally

a function of the age. A maximum age θm can be imposed by requiring that
´ θm

0 µ(θ) dθ = +∞.

As in (1.1), the redistribution of the cells away from crowed regions is modeled by Darcy’s
law, but the pressure p now depends not on the local “number” of cells

´∞
0 n(x, θ, t) dθ but on

the volume occupied by the cells. Indeed, we wish to take into account the first phase of the
cells life cycle (growth) by assuming that a cell of age θ ≥ 0 occupies a volume V (θ), where
θ 7→ V (θ) is a non-decreasing function. The volume density is then defined as

ρ(x, t) =

ˆ ∞
0

V (θ)n(x, θ, t) dθ.

Finally, the pressure is an increasing function of the volume density ρ, and as in (1.1) we can
take a simple power law:

p(x, t) =
m

m− 1
ρ(x, t)m−1

with parameter m > 1 and maximum packing density ρM = 1.

The purpose of this paper is to prove the existence of weak solutions for (1.2) and to investi-
gate some important properties of the model numerically. We note that the uniqueness for such
cross-diffusion model is a challenging and largely open problem and will not be addressed in
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this paper. Our analysis can be extended to some related models that take into account other
phenomena that we have ignored here. We mention some of those below.

Pressure-limited growth. In (1.2), we assumed (see (1.3)) that high pressure (or high volume
density) prevents the cells from dividing, thus limiting the growth of the tumor. Alternatively,
we can assume that high pressure will slow down the whole life cycle of the cell (potentially
preventing a newborn cell from growing and reaching its ”adult” size). To write such a model,
we can change slightly the meaning of the variable θ, to represent a parameter indicating how
far along its life cycle a cell has been able to go (i.e. the cell physiological age). In this model,
a cell no longer ”ages” linearly in time, since its growth is limited by a parameter depending
on the pressure p, leading to the system:

(1.4)


∂tn+ r(p)∂θn− div x(n∇p) = −r(p)ν(θ, p)n− µ(θ)n x ∈ Rd, θ > 0, t > 0

n(x, 0, t) = 2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ x ∈ Rd, t > 0

n(x, θ, 0) = nin(x, θ) x ∈ Rd, θ > 0.

where r(p) is a decreasing function of p such that r(0) = 1 and r(p) = 0 for p ≥ pM .

The role of quiescent cells. An important feature of many tumor growth models is the
fact that not all cells behave similarly and that one should make a distinction between the
proliferating cells, with distribution function still denoted by n(x, θ, t) and the quiescent cells,
with distribution function q(x, θ, t) [15, 11, 16]. After mitosis, a fraction λ of the new cells will
be quiescent (and the rest proliferating). In addition, cells can switch back and forth from one
state to the other with probabilities σ1 and σ2. This leads to the following system of equations:

(1.5)



∂tn+ r1(p)∂θn− div x(n∇xp) = −µ(θ)n− r1(p)ν(θ, p)n+ σ1q − σ2n

∂tq + r2(p)∂θq − div x(q∇xp) = −µ(θ)q − σ1q + σ2n

n(x, 0, t) = 2(1− λ)

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ

q(x, 0, t) = 2λ

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ

with r1 and r2 the different ”aging speeds” for the two types of cells and

p(x, t) =
m

m− 1
ρ(x, t)m−1, ρ(x, t) =

ˆ ∞
0

V (θ)(n(x, θ, t) + q(x, θ, t)) dθ

Note that the quiescent cells do not duplicate and might have a slower evolution if r1 6= r2.
Taking r2(p) = 0 amounts to assuming that they have a frozen life cycle: They do not grow or
duplicate - unless and until they transition to the proliferating state.

1.2. Equation for the density. Equations (1.2) and (1.4) are related to the classical model
(1.1) as follows: When ν = ν(p), µ = µ0 and V = V0 are all independent of the age θ, we
can integrate the first equation in (1.4) with respect to θ to get the following equation for
ρ(x, t) = V0

´∞
0 n(x, θ, t) dθ:

(1.6)

{
∂tρ− div (ρ∇p) = ρ (ν(p)r(p)− µ0), p = m

m−1ρ
m−1 x ∈ Rd, t > 0

ρ(x, 0) = V0

´∞
0 nin(x, θ) dθ x ∈ Rd
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which is (1.1) with growth rate F (p) = ν(p)r(p)− µ0.

In this simple case, it is thus possible to solve for ρ(x, t) without determining n(x, θ, t). In
general (when ν, µ and V do depend on θ), that is not possible: After multiplying the first
equation in (1.4) by V (θ) and integrating with respect to θ we find the following equation for
the volume density ρ(x, t):

∂tρ− div (ρ∇p) = r(p)

ˆ ∞
0

V ′(θ)n(x, θ, t) dθ + r(p)

ˆ ∞
0

ν(θ, p)(2V (0)− V (θ))n(x, θ, t) dθ

−
ˆ ∞

0
µ(θ)V (θ)n(x, θ, t) dθ.

(1.7)

The first term in the right hand side describes the expansion of the tumor due to the volume
change of individual cells, while the second term accounts for the change of volume during
mitosis. Such events are typically volume preserving (i.e. the total volume of the two daughter
cells is equal to the volume of the dividing cell), which can be enforced by assuming that
ν(θ, ρ)(2V (0) − V (θ)) = 0 for all θ > 0. A simple form for the coefficients ν and V describing
this situation is as follows:

(1.8) V (θ) =

{
V0 + αθ if θ ∈ [0, V0/α]

2V0 if θ ≥ V0/α

(1.9) ν(θ, p) = 0 for θ < V0/α

in which case (1.7) reduces to

∂tρ− div (ρ∇p) = αr(ρ)

ˆ V0/α

0
n(x, θ, t) dθ −

ˆ ∞
0

µ(θ)V (θ)n(x, θ, t) dθ.

1.3. Motivations and related work. The fact that tumor cells of different ages have different
proliferation and mortality rates is well-documented, and age-structured models for tumor cell
population without spatial dependence have been investigated by many authors, see [15, 11,
13, 16, 18]. A simple such model is

(1.10)

∂tn+ ∂θn = −β(θ)n− µ(θ)n θ > 0, t > 0

n(0, t) = 2

ˆ ∞
0

β(θ)n(θ, t) dθ t > 0.

which corresponds to our model (1.2) in the space homogeneous case. Equation (1.10) has been
used to predict the growth of the tumor and the evolution of the distribution of proliferat-
ing/quiescent cells in tumors. In [11], for example, Dyson et al. proved that the population
eventually follows asynchronous exponential growth and that the final age distribution of the
population is independent of the initial age distribution. Age-structure models have also been
used to investigate the effects of the immune system, which plays a crucial role in protecting the
body against tumor before they are large enough to be detected. The immune system detects
and removes cancerous cells via a complex mechanism, but simplified mathematical models
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have been proposed [18, 24]. In [18], the following simple age-structured tumor immune model
is analyzed:

(1.11)

∂tn+ ∂θn = −β(θ)n− µ(θ)n− σ(θ)E(t)n θ > 0, t > 0

n(0, t) = 2

ˆ ∞
0

β(θ)n(θ, t) dθ t > 0.

where E(t) denotes the number of effector cells (immune cells responsible for identifying and
clearing tumor cells), whose evolution is modeled by

dE(t)

dt
= s− µEE(t) + τN(t)E(t), N(t) =

ˆ ∞
0

n(θ, t) dθ

The existence and stability of steady states is investigated and the existence of a threshold for
the existence of tumor-free steady state is established. We also refer to [1] for a tumor immune
model that takes into account the size of tumor cell in the cell division mechanism (V (θ) in our
model).

Most of the papers mentioned above do not, however, take into account the effect of the
pressure on the proliferation rate nor the effect of the volume change during the first phase of
the cell’s life cycle. Pressure plays a determinant role in the long time evolution of the tumor.
Because increasing pressure will inhibit the proliferation of cells in the core of the tumor, only
cells near the outer rim of the tumor contribute significantly to the growth of the tumor, leading
to linear, instead of exponential, growth.

In [16], Liu et al. consider a nonlinear age-structured model in which the proliferation rate
is a decreasing function of the number of tumor cells (which is a particular case of our model
(1.5)) but still without taking into account the migration of cells toward less crowed regions. As
mentioned in the introduction, other studies have focused on this last phenomena and on the
role of mechanical stress in the growth of the tumor [4]. The resulting models have been studied
by the mathematical community for a decade or so (see for example [21, 19, 10, 8, 6, 20, 9]).

Taking into account the cells’ migration in the physical growth of the tumor is crucial,
especially in order to account for the interactions with the surrounding tissues (competition for
space with other healthy and cancerous cells, availability of nutrients etc.). We point out that
when 1 < m < ∞, migration is modeled in (1.1) by degenerate diffusion (porous media type
equation) which leads to finite speed of propagation of the support of ρ (and thus the support
of n). The limit m → ∞ has been at the topic of numerous papers since the original work of
Perthame, Quiros and Vazquez [21] (see for example [19, 9, 23, 20, 8] and references therein).
The resulting mathematical model is a Hele-Shaw free boundary problem which describes the
motion of the interface (the edge of the tumor). We also refer to [12] for a review of other free
boundary problems appearing in the context of tumor growth modeling.

In [4] and [20] both agent-based models and continuum models (similar to (1.1) and its
singular limit m → ∞) have been studied numerically. Our model is an intermediate model
between these, as it does not track the fate of every individual cell, but nevertheless allows us
to take into account the fact that the age distribution in the cell is far from homogeneous. For
example, experimental findings have suggested that most mitosis events occur near the edge of
the tumor (this is also the case with the individual based models considered in [4]) and point to
the development of regions of quiescent cells and of necrosis in the core of the tumor. Finally,
we point out that (1.2) also shares some similarities with models with phenotypic heterogeneity
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studied for instance in [8], but in that case, each cell is associated to a phenotypic variable
y ∈ [0, 1] which affects their proliferation rate but does not change with time.

There can thus be significant advantages in keeping track of both the age and the position
of the cells. Even in the simple framework where ν and V are independent of θ, the boundary
value problem (1.2) carries more information than (1.1), since the distribution n encodes the
age structure of the cell population and can thus give critical insight into the model’s prediction.
Such a model can then be used to model the effects of various therapies since the response of
the cell to the proposed treatment depends on its life cycle (most therapies target cells that are
at some specific stage of their life cycle).

As a final remark, we note that the determination of the parameter ν, µ, V , r and their
dependence on θ is a delicate issue. We refer for example to [13] for further discussion on this
issue.

Outline of the paper: The rest of the paper is organized as follows: In Section 2, we state the
main result of this paper (the existence of a weak solution for (1.2)). In Section 3, we further
discuss the properties of the model and present numerical results to illustrate these. The proof
of Theorem 2.1 is developed in Section 4. Additional details about the numerical code are given
in Appendix A.

2. Main result

In this paper, we prove the existence of a weak solution of the equation (1.2). For simplicity,
we take µ = 0 in this section (this term does not add any difficulties), so the system reduces to

(2.1)


∂tn+ ∂θn− div x(n∇xp) = −ν(θ, p)n x ∈ Rd, θ > 0, t > 0

n(x, 0, t) = 2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ x ∈ Rd, t > 0

n(x, θ, 0) = nin(x, θ) x ∈ Rd, θ > 0.

and we recall (see (1.7)) that the volume density ρ(x, t) =
´∞

0 V (θ)n(x, θ, t) dx solves

∂tρ− div (ρ∇p) =

ˆ ∞
0

V ′(θ)n(x, θ, t) dθ +

ˆ ∞
0

ν(θ, p)(2V (0)− V (θ))n(x, θ, t) dθ.(2.2)

We assume that the coefficients satisfy the following general assumptions: There exist positive
constants V0, C such that

(2.3) V0 ≤ V (θ) ≤ C, 0 ≤ V ′(θ) ≤ C, ∀θ ≥ 0, and 0 ≤ ν(θ, p) ≤ C, ∀θ, p ≥ 0

and

(2.4) |V ′′(θ)|, |∂θν(θ, p)| ≤ C.
Assumption (2.3) implies in particular that the volume density ρ(x, t) is bounded above and
below by the usual number density

´∞
0 n(x, θ, t) dθ. Our main result is the following:

Theorem 2.1. For all m > 2 and for any initial condition nin(x, θ) such that

(2.5) nin ∈ L1 ∩ L logL(Rd × (0,∞)), (|x|2 + θ)nin ∈ L1(Rd × (0,∞)), ρin ∈ L∞(Rd)
there exists a weak solution n(x, θ, t) of (1.2). The function n(x, θ, t) is such that

n ∈ L∞(0, T ;L1 ∩ L logL(Rd × (0,∞))), (|x|2 + θ)n ∈ L∞(0, T ;L1(Rd × (0,∞)))
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while the density ρ(x, t) and pressure p(x, t) = m
m−1ρ(x, t)m−1 are such that

ρ ∈ L∞(0, T ;L1 ∩ L∞(Rd)), ∇p ∈ L2(0, T ;L2(Rd))

and the equation (1.2) is satisfied in the following distributional sense:

ˆ T

0

ˆ
Rd

ˆ ∞
0

n(x, θ, t)
[
− ∂tψ(x, θ, t)− ∂θψ(x, θ, t) +∇xp(x, t) · ∇xψ(x, θ, t) + ν(θ, p(x, t))ψ(x, θ, t)

]
dθ dx dt

=

ˆ
Rd

ˆ ∞
0

nin(x, θ)ψ(x, θ, 0) dθ dx+

ˆ T

0

ˆ
Rd
ψ(x, 0, t)2

ˆ ∞
0

ν(θ, p(x, t))n(x, θ, t) dθ dx dt

(2.6)

for all ψ ∈ D(Rd × [0,∞)× [0, T )). Furthermore, the density ρ(x, t) solves (2.2).

We point out that the term
´ T

0

´
Rd
´∞

0 n∇xp ·∇xψ dθ dx dt in the weak formulation (2.6) makes
sense if we write it as ˆ T

0

ˆ
Rd

(ˆ ∞
0

n∇xψ dθ
)
· ∇xp dx dt

since |
´∞

0 n∇xψ dθ| ≤ C‖∇ψ‖L∞ρ ∈ L2(0, T ;L2(Rd)) and ∇xp ∈ L2(0, T ;L2(Rd)).

Under assumption (2.3), the density equation (2.2) implies in particular

∂tρ− div (ρ∇p) ≤ Cρ, p =
m

m− 1
ρm−1.

And multiplying this equation by mρm−2, we deduce the following equation for the pressure p:

(2.7) ∂tp− (m− 1)p∆p− |∇p|2 ≤ (m− 1)Cp.

This equation will play a role in the proof and it implies the following classical result:

Proposition 2.2 (Finite speed of propagation of the support). Under the assumptions of
Theorem 2.1, assume further that there exists R0 such that nin(x, θ) = 0 for all |x| ≥ R0 and
θ ≥ 0. Then

n(x, θ, t) = 0 for all |x| ≥ R+ e(m−1)Ct and for all θ ≥ 0

for some R depending on R0 and ‖ρin‖L∞.

Proof. Setting A := (m − 1)C, we note that given a unit vector e, the function p(x, t) =

eAt
(
eAt −

√
A(x · e−R)

)
+

is a super-solution for (2.7) with support in {x·e ≥ R+ 1√
A
eAt} and

satisfying p(x, 0) ≥ 1+
√
A(R−R0) on Supp pin. Taking R large enough so that p(x, 0) ≥ pin(x),

the result follows from the comparison principle applied to (2.7). �

On the other hand, it is not obvious that we can get a bound on R(t) that is uniform with
respect to m, the main obstacle being the term

´∞
0 V ′(θ)n(θ) dθ. This term is responsible for

another significant difference with (1.1): Even if we assume that ν(θ, p) = 0 for all p ≥ pM and
that pin(x) ≤ pM it is not true in general that p(t, x) ≤ pM for all t ≥ 0.

Finally, we note that the proof of Theorem 2.1 could easily be adapted to the pressure limited
growth model (1.4). In fact, this model has slightly better properties since if we assume that
r(p) = 0 for p ≥ pM (i.e. preventing not only mitosis, but also the growth of cells when p ≥ pM ),
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then p(x, t) ≤ pM for all t ≥ 0 if it is true at t = 0. This follows from the fact that the pressure
solves

∂tp− (m− 1)p∆p− |∇p|2 ≤ (m− 1)Cr(p)p

and the usual maximum principle.

Before we give the proof of Theorem 2.1, we present in the next section some numerical
results which illustrate other important properties of our model.

3. Properties of the model and numerical results

When the volume V (θ) and proliferation rate β(θ) are independent of θ, the volume density
ρ(t, x) = V0

´∞
0 n(t, x, θ) dθ solves the classical porous media type equation with growth term

(1.6). This classical model has been extensively studied both theoretically and numerically
(including the singular limit m → ∞, see [21, 19]). Classical properties include finite speed
expansion of the support and the existence of traveling wave solutions which describe the as-
ymptotic spreading speed of any compactly supported initial configuration. Similar properties
are expected to hold for general V (θ) and β(θ) and will be investigated numerically below. But
we also note that even in the simplest case mentioned above, our model provides additional
information concerning the spreading of tumor under mechanical process described in the intro-
duction. In this section, we further discuss some properties of the model and present numerical
results to illustrate them.

3.1. Numerical setting. Throughout this section, we fix m = 4 (so p = 4
3ρ

3) and we take

ν(θ, p) = β(θ)

(
3

4
− p
)

where β satisfies β(θ) = 0 for some small θ. Following [13], we take:

(3.1) β(θ) =

{
0 if θ ≤ θ0

(θ−θ0)2

σ(2σ2+2σ(θ−θ0)+(θ−θ0)2)
if θ ≥ θ0

where θ0 = 1 and σ = 20. We restrict ourselves to the case V (θ) ≡ V0. Note that for
computation purposes, we need to take the age variable θ in a bounded interval [0, θmax].
When we can take θmax larger than the maximum computation time, this maximum age does
not play a role in determining the solution. But since cells do not live forever, it can be relevant
(and numerically less costly) to take θmax ≤ T .

In that case, one needs to specify what happens to cells when they reach the age θ = θmax.
In the numerical computations that we present below, we assume that these ”older” cells are
still physically present (they contribute to the pressure), but they are no longer proliferating.
This amounts to assuming that β(θ) = 0 when θ > θmax.

Note that it would be easy to assume instead that these cells are proliferating with a constant
rate (β(θ) = β(θmax) for θ > θmax). In practice, we actually see very little difference between
these two settings in the simulations: Indeed, older cells are primarily found in the center of the
tumor, where the proliferation is already negligible because of the high pressure p ∼ 3/4. This
is illustrated in Figure 3 which shows the density of the cells of age θ = θmax inside the tumor.
We also point to Figure 7, which shows that when the death of cells is taken into account, the
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Figure 1. The density x 7→ ρ(t, x) for a 2-dimensional tumor at time t = 0, 10,
20, 40 and 50

number of cells of age θ converges to zero exponentially fast and taking θmax large enough will
again lead qualitatively to the same results as when θmax = +∞.

Below, we present and discuss 2D simulations where the equation is set in the square
[−10, 10] × [−10, 10] ⊂ R2 and the system is supplemented with Neumann boundary condi-
tions. Additional information about the numerical scheme can be found in Appendix A.

3.2. Growth of the tumor and mitosis events. Figure 1 shows the evolution of the density
ρ(x, t) =

´∞
0 n(x, θ, t) dθ with θmax = 20 for some non-symmetric initial data. One of the most

interesting feature of our model, compared with macroscopic models that only describe the
evolution of the density ρ(x, t), is that it keeps track of where proliferation is taking place.
Indeed, in vitro experiments with cancerous cells suggest that the growth of the tumor is
mostly due to the proliferation of cells in a small region near, but not at, the outer edge of
the tumor (a similar behavior is observed for the growth of bacteria colonies). Figure 2 shows
the distribution of cells that just experienced mitosis n(x, θ = 0, t) and clearly shows that the
model is consistent with this observation: Most mitosis events take place in an annulus close
to the edge of the support of n.

For comparison, Figure 3 shows the distribution of cells of age θmax across the tumor. These
are the cells have reached their maximal life span and are no longer proliferating (we can also
interpret this as a necrotic core).
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Figure 2. Number of mitosis events inside the tumor

Figure 3. Spatial distribution of the oldest cells

Figure 4. Average age of the cells across the tumor. The lowest average age is
found slightly inside the tumor and not at the edge.

This phenomenon is related to another important feature often identified in experiments,
the notion of “surfing cells” at the front: The cells at the leading edge of the tumor are being
pushed by the growing bulk density so that the minimum average age of the cells is not found
at the edge. This is illustrated in Figure 4 which represent the average age

Θ(x, t) :=

´∞
0 θn(x, θ, t) dθ´∞
0 n(x, θ, t) dθ

as a function of x for various time.

3.3. Long time behavior and traveling wave solutions. We now turn our attention to
the behavior of the solutions for large time. Two important features of tumor growth are
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the speed of spreading of the tumor and the asymptotic age distribution of the cells across
the tumor. Indeed, a motivation for the study of age-structured models is the development
(or improvement) of therapies. Since cells in different phases of their life cycle are affected
differently by therapies, a precise description of the age distribution of the tumor cells can help
develop effective strategies to limit their growth.

Space homogeneous model. There is an extensive literature (see for example [11]) devoted
to space-homogeneous age-structured models such as (1.10). The long time asymptotic for
(1.10) is a classical problem: This system has particular solutions of the form

(3.2) n∞(θ, t) = ceλtϕ(θ)

where ϕ solves
λϕ+ ϕ′ = −β(θ)ϕ− µ(θ)ϕ, ϕ(0) = 1

and λ is determined by the condition

2

ˆ ∞
0

β(θ)ϕ(θ) dθ = 1.

The formula (3.2) shows that the parameter λ characterizes the exponential growth of the tumor,
while the function ϕ describes the asymptotic age distribution of the cells. In particular, it can
be proved (see [11]) that for any nonzero initial data, the solution of (1.10) satisfies:

n(θ, t)´∞
0 n(θ′, t)dθ′

→ ϕ(θ) as t→ +∞.

Space-dependent model: Traveling wave solutions. When pressure and space variable
are taken into account, the asymptotic behavior of the solutions is very different. An important
property of the reaction-diffusion equation (1.1) is the existence of traveling wave solutions and
the finite speed of spreading (see for example [23, 22] and references therein for traveling wave
solutions in the context of tumor growth). In particular, we recall that when F (p) = pM − p,
(1.1) admits solutions of the form ρ̄(x − ct) for all c ≥ c∗ where the smallest speed c∗ is also
the spreading speed of compactly supported solutions.

The existence of traveling wave solutions for the simple age-structured model

(3.3)

∂tn+ ∂θn− div x(n∇xp) = −ν(θ, p)n

n(x, 0, t) = 2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ

with ν(θ, p) = β(θ)(pM − p) can be observed numerically in dimension 1 as shown in Figure 5:
After some initial transition time, the solution is asymptotically close to a traveling wave, which
is a solution of (3.3) of the form n(x, θ, t) = n̄(x−ct, θ) where the corresponding pressure variable
p̄(x) satisfies the boundary condition

(3.4) lim
x→−∞

p̄(x) = pM , lim
x→+∞

p̄(x) = 0.

A rigorous mathematical justification of this fact is the object of a forthcoming work [27]. This
implies that the growth of the tumor is no longer exponential: The speed of the traveling
wave characterizes the growth of the diameter of the tumor. In dimension 2, for example,
this implies that the total mass of the tumor grows quadratically, a phenomenon that can be
confirmed numerically (see Figure 6).
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Figure 5. Development of a front propagating with constant speed: The fig-
ure shows the evolution of the one-dimensional density ρ(x, t) starting from a
characteristic function 1

2χx≤−5 at time t = 0, 5, 10, 15, 20, 25, 30 and 35.

Figure 6. Growth of
(´

Ω ρ(x, t) dx
)1/2

over time for a two dimensional tumor.

Focusing on the behavior of n(x, θ, t) for large t we see numerically that the traveling wave
solution satisfies

(3.5) n(x, θ, t) = n̄(x− ct, θ) ∼ φ(x+ c(θ − t)) as t→∞

for fixed x and θ and for some profile φ. This observation is consistent with the equation since
(3.3) implies ∂tn+ ∂θn = −c∂xn̄+ ∂θn̄→ 0 as x→ −∞. This can be explained as follows: As
the tumor is spreading, the pressure at a given x converge to pM when t → ∞ so that both
diffusion and proliferation become negligible. The asymptotic behavior (3.5) simply captures
the aging of the cells.
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Figure 7. The function φ∞(θ) when µ(θ) is given by (3.7) and β(θ) is given
by (3.1) (left) or β(θ) ≡ 1 (right)

Death rate: Expansion vs. Regression of the tumor. The long time behavior of the
solutions is quite different when we include the death rate µ(θ) in the model:

(3.6)

∂tn+ ∂θn− div x(n∇xp) = −ν(θ, p)n− µ(θ)n

n(x, 0, t) = 2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ.

First, we observe numerically that for large enough µ, the tumor might shrink and eventually
disappear (limt→∞ n(t) = 0), while for small µ, a moving front with positive speed develops
as in the case µ = 0. We also note that traveling wave solutions cannot satisfy (3.4) when
µ > 0 since the right-hand side of (3.6) no longer vanishes for p = pM . Finally, when the tumor
spreads, numerical simulations show that there exists a unique profile φ∞(θ) such that

n(x, θ, t)→ φ∞(θ) as t→∞

for all x ∈ Rd (which is very different from the asymptotic behavior (3.5)). Examples of this
profile φ∞(θ) are shown in Figure 7 when µ is given by

(3.7) µ(θ) =

{
0 if θ < 10

0.1 if θ ≥ 10

and for two different choices of β(θ).
This behavior can be investigated analytically: Going back to (3.3) we see that the asymptotic

profile φ∞(θ) (if it exists) must solve

(3.8)


φ′(θ) = −ν(θ, p0)φ(θ)− µ(θ)φ(θ), θ > 0

φ(0) = 2

ˆ ∞
0

ν(θ, p0)φ(θ) dθ

p0 =
m

m− 1

(ˆ ∞
0

V (θ)φ(θ) dθ

)m−1

and we can show the following result:
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Proposition 3.1. Assume that m > 1, that µ(θ) satisfies
´∞

0 µ(θ) dθ = ∞ (every cell dies
eventually) and that ν(θ, p) satisfies (1.3). Then (3.8) has a unique positive solution φ∞(θ) if
and only if

(3.9)

ˆ ∞
0

µ(θ)e−
´ θ
0 ν(s,0)+µ(s) ds dθ <

1

2
.

Proof. For a given p0 the solutions of the first equation in (3.8) are given by

φ(θ) = αe−
´ θ
0 ν(s,p0)+µ(s) ds

with α ∈ R. The second equation in (3.8) is then equivalent to

(3.10) 1 = 2

ˆ ∞
0

ν(θ, p0)e−
´ θ
0 ν(s,p0)+µ(s) ds dθ

which is a condition on p0. The non-degeneracy condition
´∞

0 µ(θ) dθ =∞ impliesˆ ∞
0

ν(θ, p0)e−
´ θ
0 ν(s,p0)+µ(s) ds dθ = 1−

ˆ ∞
0

µ(θ)e−
´ θ
0 ν(s,p0)+µ(s) ds dθ

and so (3.10) is equivalent to ˆ ∞
0

µ(θ)e−
´ θ
0 ν(s,p0)+µ(s) ds dθ =

1

2
.

Under assumptions (1.3), the left-hand side is monotone increasing with respect to p0 and equal
to 1 when p0 = pM . The existence of a unique p0 ∈ (0, pM ) satisfying (3.10) is thus equivalent
to the condition (3.9).

Under condition (3.9), the discussion above shows that there is a unique p0 ∈ (0, pM ) such
that (3.10) holds. We deduce the existence of φ∞ solution of (3.8) given by

φ∞(θ) = αe−
´ θ
0 ν(s,p0)+µ(s) ds

where the constant α is determined by the last equation in (3.8). �

In view of this proposition, we conjecture that (3.9) identifies the threshold that characterizes
the long time behavior (expansion vs. regression) of the tumor mass and that when (3.9) holds,
the long time dynamic of the tumor will be described by traveling wave solutions of (3.3) which
satisfy the boundary conditions

lim
x→−∞

p̄(x) = p0, lim
x→−∞

n̄(x, θ) = φ∞(θ), lim
x→+∞

p̄(x) = lim
x→+∞

n̄(x, θ) = 0.

When µ and ν(p) = β(pM − p) are independent of θ, condition (3.9) is equivalent to µ < β pM
which is indeed a necessary and sufficient condition for the growth of the tumor. This is easy
to show since in that case the equation for the density reduces to

∂tρ−∆ρm = ρ(βpM − µ− p).
When ν(p, θ) = β(θ)(pM − p) with β(θ) given by (3.1), Figure (8) shows the evolution of the
mass of the tumor for different values of µ (independent of θ). The behavior is consistent
with condition (3.9) which identifies µ = 0.1076 as the threshold value when the death rate is
constant.
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Figure 8. Evolution of the mass of the tumor when β(θ) is given by (3.1) and
for different values of the death rate µ. The first two values of µ are below the
threshold µ = 0.1076 determined by condition (3.9), while the last two values
are above.

4. Proof of Theorem 2.1

We now turn to the proof of Theorem 2.1. We will prove the existence of a solution for (1.2)
in two steps: First we will show that the following regularized system

(4.1)


∂tn+ ∂θn− div x(n∇xp(ρ))− ε∆xn = −ν(θ, p)n x ∈ Rd, θ > 0, t > 0

n(x, 0, t) = 2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθ x ∈ Rd, t > 0

n(x, θ, 0) = nin(x, θ) x ∈ Rd, θ > 0.

has a solution for all ε > 0 where we recall that

p(ρ) =
m

m− 1
ρm−1, ρ(x, t) =

ˆ ∞
0

V (θ)n(x, θ, t) dθ.

Then we will pass to the limit ε→ 0 to construct a solution of (1.2) and prove our main result.

4.1. Existence of a solution for the regularized system (4.1). The existence of a solution
for (4.1) will be proved by using a discrete time scheme which splits the transport in θ and the
diffusion in x: We initialize the scheme by setting n0(x, θ) = nin(x, θ) and for all k ≥ 0, we
proceed as follows:

Step 1: Given nk(x, θ), define nk+ 1
2
(x, θ) solution of

(4.2)

nk+ 1
2
− nk + τ∂θnk+ 1

2
= −τν(θ, pk)nk+ 1

2
x ∈ Rd, θ > 0

nk+ 1
2
(x, 0) = 2

ˆ ∞
0

ν(θ, pk)nk(x, θ) dθ x ∈ Rd.

where pk = p(ρk) = m
m−1ρ

m−1
k and ρk(x) =

´∞
0 V (θ)nk(x, θ) dθ. Note that the space variable x

is a parameter in this equation.
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Step 2: Then define nk+1(x, θ, t) solution of

(4.3) nk+1 − nk+ 1
2
− τdiv x(nk+1∇xp(ρk+1))− ετ∆nk+1 = 0 x ∈ Rd, θ > 0.

Note that the age variable θ is a parameter in this equation.

This iterative scheme defines nk(x, θ) for all k ∈ N. We then define nτ (x, θ, t) piecewise
constant function in t by

(4.4) nτ (x, θ, t) = nk(x, θ), t ∈ [kτ, (k + 1)τ)

and

ρτ (x, t) =

ˆ ∞
0

V (θ)nτ (x, θ, t) dθ.

We also define the piecewise linear function ñτ (x, θ, t) which satisfies ñτ (x, θ, kτ) = nk(x, θ):

(4.5) ñτ (x, θ, t) =

(
(k + 1)τ − t

τ

)
nk(x, θ) +

(
t− kτ
τ

)
nk+1(x, θ), t ∈ [kτ, (k + 1)τ)

and the corresponding volume density

ρ̃τ (x, t) =

ˆ ∞
0

ñτ (x, θ, t) dθ.

The well-posedness of the scheme (i.e. the existence and uniqueness of a solution to (4.2)
and (4.3)) will be proved below. We then note that by combining (4.2) and (4.3), we find
(4.6)

nk+1−nk
τ + ∂θnk+ 1

2
− div x(nk+1∇xp(ρk+1))− ε∆nk+1 = −ν(θ, p(ρk))nk+ 1

2
x ∈ Rd θ > 0

nk+ 1
2
(x, 0) = 2

ˆ ∞
0

ν(θ, p(ρk))nk(x, θ) dθ x ∈ Rd.

Our goal is then to derive appropriate bounds on nk, ρk and on the interpolations nτ , ρτ and
ρ̃τ in order to pass to the limit τ → 0 in (4.6)

4.2. Iterative scheme: Existence and estimates from nk, ρk.

Proposition 4.1 (Well-posedness of Step 1). Given nk(x, θ) non-negative function in L1(Rd×
(0,∞)), there exists nk+ 1

2
(x, θ) solution of (4.2). Furthermore, the volume density satisfies

(4.7) ρk+ 1
2
(x) ≤ 1 + Cτ

1− Cτ
ρk(x) ∀x ∈ Rd

(4.8) |ρk+ 1
2
(x)− ρk(x)| ≤ Cτρk(x) ∀x ∈ Rd

for some constant C independent of k and τ and for all τ > 0 small enough. Finally, we also
have

(4.9)

ˆ
ϕ(θ)[nk+ 1

2
(x, θ)− nk(x, θ) dθ| ≤ C‖ϕ′(θ)‖ρk(x)τ ∀x ∈ Rd.
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Proof. We rewrite (4.2) as(1 + τν(θ, pk))nk+ 1
2

+ τ∂θnk+ 1
2

= nk θ > 0

nk+ 1
2
(x, 0) = 2

ˆ ∞
0

ν(θ, pk)nk(x, θ) dθ.

This equation can be solved explicitly: With A(θ) =
´ θ

0 1 + τν(θ′, pk) dθ
′ ≥ θ, the unique

solution of (4.2) is given by:

nk+ 1
2
(x, θ) = 2e−

1
τ
A(θ)

ˆ ∞
0

ν(θ′, pk)nk(x, θ
′) dθ′ +

1

τ

ˆ θ

0
e−

1
τ

[A(θ)−A(θ′)]nk(x, θ
′) dθ′.

Multiplying the equation (4.2) by V (θ) and integrating with respect to θ, we get the following
relation (using (2.3)):

ρk+ 1
2
(x)− ρk(x) = τ

[ˆ ∞
0

ν(θ, pk)2V (0)nk(x, θ) dθ −
ˆ ∞

0
ν(θ, pk)V (θ)nk+ 1

2
(x, θ) dθ

+

ˆ ∞
0

V ′(θ)nk+ 1
2
(x, θ) dθ

]
(4.10)

≤ Cτ [ρk + ρk+ 1
2
](4.11)

which yields first (4.7) and then (4.8). Multiplying the equation (4.2) by ϕ(θ) and integrating
with respect to θ also gives (4.9). �

Proposition 4.2 (Well posedness of Step 2). Given nk+ 1
2

non-negative function in L1(Rd ×
(0,∞)) ∩ L∞(Rd;L1((0,∞)), there exists a non-negative function nk+1 ∈ L1(Rd × (0,∞)) ∩
L∞(Rd;L1((0,∞)) solution of (4.3). Furthermore the density satisfies:
(4.12)ˆ
Rd
ρqk+1 dx+

4q(q − 1)

(m+ q − 1)2
τ

ˆ
Rd

∣∣∣∣∇(ρ
m+q−1

2
k+1 )

∣∣∣∣2 dx+ ετ
4(q − 1)

q2

ˆ
Rd

∣∣∣∇ρ q2k+1

∣∣∣2 dx ≤ ˆ
Rd
ρq
k+ 1

2

dx

for all q ∈ [1,∞) and

(4.13) ‖ρk+1‖L∞(Rd) ≤ ‖ρk‖L∞(Rd).

Proof. In order to prove that a solution exists, we first notice that by multiplying (4.3) by V (θ)
and integrating with respect to θ, we get

(4.14) ρk+1 − τdiv x(ρk+1∇xp(ρk+1))− τε∆ρk+1 = ρk+ 1
2

x ∈ Rd,

which is a classical nonlinear elliptic equation (recall that p(ρ) = m
m−1ρ

m−1). Given ρk+ 1
2
∈

L1 ∩ L∞(Rd), this equation has a unique solution with ρk+1 ∈ L1 ∩ L∞(Rd). We then define
nk+1(x, θ) the solution of (4.3) with p(ρk+1(x)) given by the solution of (4.14). This solution
exists: indeed, θ is a parameter in this equation, so we only need to solve this equation for
a fixed θ ≥ 0, and when ε > 0, the solution ρk+1 of (4.14) is smooth, so the advection term
∇xp(ρε) is smooth and the existence of a solution is straightforward.
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Since we first found ρk+1(x) and then nk+1(x, θ), we need to make sure that
´∞

0 V (θ)nk+1(·, θ) dθ =
ρk+1 in order to show that nk(x) solves (4.3). For that we note that the function u(x) =
ρk+1(x)−

´∞
0 V (θ)nk+1(x, θ) dθ solves

u− div (u∇p(ρk+1))− ε∆u = 0.

In order to prove that u = 0, we take βδ(s) =
√
s2 + δ2− δ and multiply this equation by β′δ(u)

to find: ˆ
uβ′δ(u) dx = −ε

ˆ
β′′δ |∇u|2 dx−

ˆ
uβ′δ(u)∇p(ρk+1) · ∇u dx

≤ −
ˆ
∇p(ρk+1) · ∇(uβ′δ(u)− βδ(u)) dx

≤
ˆ

∆p(ρk+1)(uβ′δ(u)− βδ(u)) dx

Since |sβ′δ(s) − βδ(s)| ≤ δ and sβ′δ(s) → |s| with sβ′δ(s) ≤ |s|, we deduce
´
|u| dx ≤ 0, that is,

u = 0 and so ˆ ∞
0

V (θ)nk+1(x, θ) dθ = ρk+1(x), a.e. x ∈ Rd

thus proving that nk(x) is the solution of (4.3).

Next we derive (4.12): we multiply (4.14) by ρq−1
k+1 (for q > 1) and integrate in x to get:ˆ

Rd
ρqk+1 dx− τρ

q−1
k+1div (ρk+1∇pk+1) dx− τε

ˆ
Rd
ρq−1
k+1∆ρk+1 dx =

ˆ
Rd
ρk+ 1

2
ρq−1
k+1 dx.

Rearranging, and using the convexity of the function s 7→ sq for any q > 1 and s ≥ 0, we
deduce:

τq(q − 1)

ˆ
Rd
ρm+q−3
k+1 |∇ρk+1|2 dx+ τε(q − 1)

ˆ
Rd
ρq−2
k+1|∇ρk+1|2 dx =

ˆ
Rd
ρq−1
k+1(ρk+ 1

2
− ρk+1) dx

≤
ˆ
Rd

1

q
ρq
k+ 1

2

− 1

q
ρqk+1 dx.

which implies (4.12). To get (4.13), we can apply the maximum principle to (4.14) or pass to
the limit q →∞ in the inequality ‖ρk+1‖Lq(Rd) ≤ ‖ρk‖Lq(Rd). �

4.3. Estimates for nτ and ρτ . We recall that once the nk and ρk have been iteratively
constructed, we can define the piecewise constant functions nτ (x, θ, t) and ρτ (x, t) and the
piecewise linear interpolations ñτ (x, θ, t), ρ̃τ (x, t) (see (4.4) and (4.5)). In what follows, we fix
T = Kτ > 0. We start with the following straightforward consequence of Propositions 4.1
and 4.2:

Proposition 4.3. There exists C such that if τ ≤ 1
C , then ρτ ≥ 0 is bounded in L∞(0, T ;Lq(Rd))

for all q ∈ [1,∞] uniformly with respect to τ .
Furthermore, for all q ∈ (1,∞), there exists Cq such that if τ ≤ 1

Cq
, then

(4.15) ‖∇ρ
m+q−1

2
τ ‖2L2(0,T ;L2(Rd)) + ε‖∇ρ

q
2
τ ‖2L2(0,T ;L2(Rd)) ≤ Cq



AGE-STRUCTURED MECHANICAL MODELS FOR TUMOR GROWTH 19

Proof. Combining (4.12) with (4.7) yieldsˆ
Rd
ρqk+1 dx+

4q(q − 1)

(m+ q − 1)2
τ

ˆ
Rd
|∇(ρ

m+q−1
2

k+1 )|2 dx

+ ετ
4(q − 1)

q2

ˆ
Rd
|∇ρ

q
2
k+1|

2 dx ≤
(

1 + Cτ

1− Cτ

)q ˆ
Rd
ρqk dx.

(4.16)

Similarly, combining (4.13) with (4.7) yields:

(4.17) ‖ρk+1‖L∞(Rd) ≤
1 + Cτ

1− Cτ
‖ρk‖L∞(Rd).

Using the fact that 1+x
1−x ≤ 1 + 4x when x ∈ [0, 1/2], and iterating (4.17), we get

‖ρK‖L∞(Rd) ≤ (1 + 4Cτ)K ‖ρ0‖L∞(Rd) ≤ e4CKτ‖ρ0‖L∞(Rd)

as long as τ < 1
2C . Similarly, (4.16) gives

‖ρK‖Lq(Rd) ≤ (1 + 4Cτ)K ‖ρ0‖Lq(Rd) ≤ e4CKτ‖ρ0‖Lq(Rd).

These inequalities imply the first statement.
Next, we can rewrite (4.16) asˆ

Rd
ρqk+1 dx+

4q(q − 1)

(m+ q − 1)2
τ

ˆ
Rd
|∇(ρ

m+q−1
2

k+1 )|2 dx+ ετ
4(q − 1)

q2

ˆ
Rd
|∇ρ

q
2
k+1|

2 dx

≤
ˆ
Rd
ρqk dx+

[(
1 + Cτ

1− Cτ

)q
− 1

]ˆ
Rd
ρqk dx

≤
ˆ
Rd
ρqk dx+ Cqτ

ˆ
Rd
ρqk dx

as long as Cqτ ≤ 1 for some constant Cq depending on q. Summing up for k = 0, . . .K, we
deduce:

4q(q − 1)

(m+ q − 1)2

K∑
k=0

τ

ˆ
Rd
|∇(ρ

m+q−1
2

k+1 )|2 dx

+ ε
4(q − 1)

q2

K∑
k=0

τ

ˆ
Rd
|∇ρ

q
2
k+1|

2 dx ≤
(
1 + CqKτe

4qCKτ
)
‖ρ0‖qLq(Rd)

which implies (4.15). �

Next, we prove the following result, which will be used to control the values of nτ at infinity
(in x and θ):

Proposition 4.4. There exists a constant C such that if τ ≤ 1
C , then

(4.18) sup
t∈[0,T ]

ˆ
Rd

ˆ ∞
0

(|x|2 + θ)nτ (x, θ, t) dθ dx ≤ C

with C dependent on T by not on τ .
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Proof. Multiplying (4.2) by (|x|2 + θ) ≥ 0 and integrating in x and θ givesˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk+ 1
2
dx dθ

≤ −τ
ˆ ∞

0

ˆ
Rd
∂θnk+ 1

2
(|x|2 + θ) dx dθ +

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk dx dθ

≤ τ
ˆ ∞

0

ˆ
Rd
nk+ 1

2
dx dθ + τ

ˆ
Rd
nk+ 1

2
(x, 0)|x|2 dx+

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk dx dθ

≤ τ
ˆ
Rd
ρk+ 1

2
dx+ τ

ˆ
Rd

2

ˆ ∞
0

ν(θ, pk)nk(x, θ)|x|2 dθ dx+

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk dx dθ

≤ τ
ˆ
Rd
ρk+ 1

2
dx+ (1 + Cτ)

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk dx dθ.

(4.19)

Similarly, (4.3) yields:ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk+1 dx dθ =

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk+ 1
2
dx dθ + 2dτ

ˆ
Rd
ρmk+1 + ερk+1 dx.

Combining these inequalities give:ˆ ∞
0

ˆ
Rd

(|x|2+θ)nk+1 dx dθ ≤ (1+Cτ)

ˆ ∞
0

ˆ
Rd

(|x|2+θ)nk dx dθ+Cτ

ˆ
Rd
ρk+ 1

2
+ρmk+1+ερk+1 dx

and the bounds from Proposition 4.3 (together with (4.7) to control ρk+ 1
2
) implies

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk+1 dx dθ ≤ (1 + Cτ)

ˆ ∞
0

ˆ
Rd

(|x|2 + θ)nk dx dθ + C(T )τ

for all k ≤ K (with Kτ = T ). which implies
(4.20)ˆ ∞

0

ˆ
Rd

(|x|2 +θ)nk dx dθ ≤ (1+Cτ)k
ˆ ∞

0

ˆ
Rd

(|x|2 +θ)nin dx+C(T )(1+Cτ)k+1 ≤ C(1+Cτ)k

and the result follows.
�

Finally, we note that while ρτ is bounded in L∞(0, T ;Lp(Rd)) for p ∈ [1,∞], we only have
nτ bounded in L∞(0, T ;L1(Rd× (0,∞)). In order to show that we do not get a measure (in θ)
in the limit τ → 0, we will make use of the following result:

Proposition 4.5. The piecewise constant function nτ ≥ 0 is bounded in L∞(0, T ;L1(Rd ×
(0,∞))) and satisfies:

(4.21) sup
t∈(0,T )

ˆ
Rd

ˆ ∞
0

nτ (x, θ, t) log+ nτ (x, θ, t) dθ dx ≤ C

for some constant depending only on T and the initial condition.

This proposition follows from the following Lemma which we prove below:
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Lemma 4.6. There exists a constant C such that

ˆ
Rd

ˆ ∞
0

nk+1(x, θ) log(nk+1(x, θ))V (θ) dθ dx

+
4τ

m

ˆ
Rd
|∇(ρk+1)m/2(x)|2 dx

≤ (1 + Cτ)

ˆ
Rd

ˆ ∞
0

nk(x, θ) log(nk(x, θ))V (θ) dθ dx+ Cτ(1 + Cτ)k.

(4.22)

Note that inequality (4.22) also yields a bound on ∇ρm/2τ . We did not include this estimate
in Proposition 4.5 since we will not be using it.

Proof of Proposition 4.5. Iterating (4.22), we get:ˆ
Rd

ˆ ∞
0

nk(x, θ) log(nk(x, θ))V (θ) dθ dx ≤ (1 + Cτ)k
ˆ
Rd

ˆ ∞
0

nin(x, θ) log(nin(x, θ))V (θ) dθ dx

+ Ckτ(1 + Cτ)k.

Recalling that kτ = T , we deduce

sup
k=1,...,K

ˆ
Rd

ˆ ∞
0

nk(x, θ) log(nk(x, θ))V (θ) dθ dx ≤ eCT
ˆ
Rd

ˆ ∞
0

nin(x, θ) log(nin(x, θ))V (θ) dθ dx

+ CTeCT .

Next, we recall the classical inequality |s log s|χ0≤s≤1 ≤ sω + Ce−ω/2 (for all ω) with ω =
θ + |x|2. We deduce:ˆ

Rd

ˆ ∞
0

nτ log+(nτ )V (θ) dθ dx

≤
ˆ
Rd

ˆ ∞
0

nτ log(nτ )V (θ) dθ dx+

ˆ
Rd

ˆ ∞
0

(
(θ + |x|2)nτ + Ce−(θ+|x|2)/2

)
V (θ) dθ dx

and so (4.18) implies

(4.23)

ˆ
Rd

ˆ ∞
0

nτ log+(nτ )V (θ) dθ dx ≤
ˆ
Rd

ˆ ∞
0

nτ log(nτ )V (θ) dθ dx+ C(T )

for all t ∈ [0, T ] and the result follows.
�

Proof of Lemma 4.6. Multiplying (4.3) by V (θ)(log(nk+1) + 1) and integrating with respect to
θ and x yields:ˆ

Rd

ˆ ∞
0

(nk+1 − nk+ 1
2
)(log(nk+1) + 1)V (θ) dθ dx+ τ

ˆ
Rd
∇p(ρk+1) · ∇ρk+1 dx = 0

and so the convexity of s 7→ s log s and the definition of p(ρ) gives
(4.24)ˆ
Rd

ˆ ∞
0

nk+1 log(nk+1)V (θ) dθ dx+
4τ

m

ˆ
Rd
|∇(ρk+1)m/2|2 dx ≤

ˆ
Rd

ˆ ∞
0

nk+ 1
2

log(nk+ 1
2
)V (θ)dθ dx
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Similarly, multiplying (4.2) by V (θ)(log(nk+ 1
2
) + 1), we get

ˆ
Rd

ˆ ∞
0

(nk+ 1
2
− nk)(log(nk+ 1

2
) + 1)V (θ) dθ dx

= −τ
ˆ
Rd

ˆ ∞
0

∂θ(nk+ 1
2

log(nk+ 1
2
))V (θ) dθ dx− τ

ˆ
Rd

ˆ ∞
0

ν(θ, pk)nk+ 1
2
(log(nk+ 1

2
) + 1)V (θ) dθ dx

≤ τ
ˆ
Rd
nk+ 1

2
(x, 0) log(nk+ 1

2
(x, 0))V (0) dx+ τ

ˆ
Rd

ˆ ∞
0

(nk+ 1
2

log(nk+ 1
2
))V ′(θ) dθ dx

− τ
ˆ
Rd

ˆ ∞
0

ν(θ, pk)nk+ 1
2

log(nk+ 1
2
)V (θ) dθ dx.

Using the convexity of s 7→ s log s again, we deduce
ˆ
Rd

ˆ ∞
0

nk+ 1
2

log(nk+ 1
2
)V (θ) dθ dx−

ˆ
Rd

ˆ ∞
0

nk log(nk)V (θ) dθ dx

≤ τ
ˆ
Rd
nk+ 1

2
(x, 0) log+(nk+ 1

2
(x, 0))V (0) dx

+ τ

ˆ
Rd

ˆ ∞
0

(nk+ 1
2

log(nk+ 1
2
))[V ′(θ)− ν(θ, pk)V (θ)] dθ dx.

The first term can be bounded using the monotonicity of s 7→ s log+ s and the fact that

nk+ 1
2
(x, 0) ≤ Cρk(x) which is bounded in L1 ∩ L∞(Rd) (by a constant depending only on T ).

For the second term, we use the fact that |V ′(θ)− ν(θ, pk)V (θ)| ≤ CV (θ) and get:
ˆ
Rd

ˆ ∞
0

nk+ 1
2

log(nk+ 1
2
)V (θ) dθ dx−

ˆ
Rd

ˆ ∞
0

nk log(nk)V (θ) dθ dx

≤ Cτ + Cτ

ˆ
Rd

ˆ ∞
0

∣∣∣nk+ 1
2

log(nk+ 1
2
))
∣∣∣V (θ) dθ dx

and we can proceed as in (4.23) (we combine (4.19) and (4.20) to get the required bound on
the moments of nk+ 1

2
) to get:

ˆ
Rd

ˆ ∞
0

nk+ 1
2

log(nk+ 1
2
)V (θ) dθ dx−

ˆ
Rd

ˆ ∞
0

nk log(nk)V (θ) dθ dx

≤ Cτ + Cτ

ˆ
Rd

ˆ ∞
0

(nk+ 1
2

log(nk+ 1
2
))V (θ) dθ dx+ Cτ(1 + Cτ)k.(4.25)

which implies (assuming τ is small enough so that Cτ < 1/2 and 1
1−Cτ ≤ (1 + Cτ)):

ˆ
Rd

ˆ ∞
0

nk+ 1
2

log(nk+ 1
2
)V (θ) dθ dx ≤ (1 + Cτ)

ˆ
Rd

ˆ ∞
0

nk log(nk)V (θ) dθ dx+ Cτ(1 + Cτ)k.

(4.26)

We combine this inequality with (4.24) to get (4.22). �
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4.4. Weak convergence of nτ and strong convergence of ρτ as τ → 0. Since nτ is
bounded in L∞(0, T ;L1(Rd × (0,∞)), Propositions 4.4 implies that it converges up to a subse-
quence for the narrow topology to n ∈ L∞(0, T ;M(Rd × (0,∞)). From now on, we thus fix a
subsequence (still denoted nτ for simplicity) such that

(4.27)

ˆ T

0

ˆ
Rd

ˆ ∞
0

nτ (x, θ, t)ψ(x, θ, t) dθ dx dt→
ˆ T

0

ˆ
Rd

ˆ ∞
0

n(x, θ, t)ψ(t, x, θ) dθ dx dt

for all ψ ∈ C0
b ([0, T ]×Rd×(0,∞)). Furthermore 4.5 and Dunford Pettis theorem imply that n ∈

L∞(0, T ;L1(Rd×(0,∞)) and that the limit (4.27) holds for function ψ ∈ L∞([0, T ]×Rd×(0,∞)).
If we take ψ(x, θ, t) = V (θ)φ(x, t) in (4.27), we deduce (along the same subsequence)

ρτ (x, t) ⇀ ρ(x, t) =

ˆ ∞
0

n(x, θ, t)V (θ) dθ.

In order to pass to the limit τ → 0 and derive (4.1), we need to establish the strong conver-
gence of ρτ and ∇ρm−1

τ . A key ingredient for that is the following equation for ρk, which we
obtain by combining (4.10) and (4.14):

(4.28) ρk+1 − ρk − τdiv x(ρk+1∇xp(ρk+1))− τε∆ρk+1 = τFk

where

Fk(x) =

ˆ ∞
0

ν(θ, pk)2V (0)nk(x, θ) dθ−
ˆ ∞

0
ν(θ, pk)V (θ)nk+ 1

2
(x, θ) dθ+

ˆ ∞
0

V ′(θ)nk+ 1
2
(x, θ) dθ.

We have

|Fk(x)| ≤ Cρk(x) + Cρk+ 1
2
(x)

and so Fτ is bounded in L∞(0, T ;L1 ∩ L∞(Rd)). We will deduce the following proposition:

Proposition 4.7. Up to another subsequence ρτ (x, t) converges strongly to ρ(x, t) in L2(0, T ;L2(Rd))
and almost everywhere in [0, T ]× Rd.

Proof. First, we will prove the convergence of the piecewise linear function ρ̃τ (t): The bound
(4.15) with q = 2 gives

ε‖∇ρτ‖L2(0,T ;L2(Rd)) ≤ C
(this bound is the main reason we added the regularization ε∆n). Since ρ̃τ is the linear inter-
polation with the same value as ρτ , it is easy to check that we also have

ε‖∇ρ̃τ‖L2(0,T ;L2(Rd) ≤ C.

Furthermore, we have

∂tρ̃τ =
ρk+1 − ρk

τ
= div x(ρk+1∇xp(ρk+1)) + ε∆ρk+1 + τFk for t ∈ (kτ, (k + 1)τ)

and so

‖∂tρ̃τ‖L2(0,T ;H−1(Ω)) ≤ C.

Together with the bound on
´ d
R |x|

2ρ̃τ dx (see Proposition 4.4), we have all we need to ap-

ply Aubin-Lions and show that {ρ̃τ}τ>0 is pre-compact in L2(0, T ;L2(Rd)): There exists ρ ∈
L2(0, T ;H1(Rd)) such that ρ̃τ converges (up to a subsequence) to ρ strongly in L2(0, T ;L2(Rd)).
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Finally, note that for t ∈ [kτ, (k + 1)τ), we have

ρτ (x, t)− ρ̃τ (x, t) =
t− kτ
τ

(ρk+1 − ρk)

= (t− kτ)[div x(ρk+1∇xp(ρk+1)) + ε∆ρk+1 + Fk

and so
‖ρτ − ρ̃τ‖L2(0,T ;H−1(Rd)) ≤ Cτ

It follows that ρτ converges to ρ in L2(0, T ;H−1(Rd)) and since ρτ is bounded in L2(0, T ;H1(Rd)),
it also converges strongly in L2(0, T ;L2(Rd)).

�

Finally, since ρτ is bounded in L∞(0, T, L∞(Rd)), we deduce the convergence of the pressure
pτ = m

m−1ρ
m−1
τ :

Corollary 4.8. Along the same subsequence as above, ρτ converges to ρ strongly in Lp((0, T )×
Rd) and so pτ (x, t) = m

m−1ρτ (x, t)m−1 converges to p(x, t) = m
m−1ρ(x, t)m−1 strongly in Lp and

almost everywhere in (0, T )× Rd.

4.5. Strong convergence of ∇pτ as τ → 0. The strong convergence of pτ allows us to pass
to the limit in most terms in the weak formulation of (4.1) except for the term nτ∇pτ . Since nτ
only converges weakly, we have to show that ∇pτ converges strongly. This is proved by using
the ρτ equation (4.28) and its limit:

First we define the piecewise constant function

Fτ (x, t) = Fk(x) t ∈ [kτ, (k + 1)τ).

We note that (4.9) implies

Fk(x) =

ˆ ∞
0

ν(θ, pk)2V (0)nk(x, θ) dθ−
ˆ ∞

0
ν(θ, pk)V (θ)nk(x, θ) dθ+

ˆ ∞
0

V ′(θ)nk(x, θ) dθ+O(Cρk(x)τ)

with C depending on ‖V ‖∞, ‖V ′‖∞, ‖∂θν‖∞ and ‖V ′′‖∞. We can thus write:

Fτ (x, t) =

ˆ ∞
0

ν(θ, pτ )2V (0)nτ (x, θ, t) dθ−
ˆ ∞

0
ν(θ, pτ )V (θ)nτ (x, θ, t) dθ+

ˆ ∞
0

V ′(θ)nτ (x, θ, t) dθ+O(τ)

The weak convergence of nτ and the strong convergence of pτ imply that Fτ converges weakly
in L2(0, T ;L2(Rd)) to

F (x) =

ˆ ∞
0

ν(θ, p)2V (0)n(x, θ) dθ −
ˆ ∞

0
ν(θ, p)V (θ)n(x, θ) dθ +

ˆ ∞
0

V ′(θ)n(x, θ) dθ.

Furthermore, we can rewrite equation (4.28) as

∂tρ̃τ −∆ρmτ − ε∆ρτ = Fτ

and passing to the limit τ → 0 (since ρmτ → ρm) in the sense of distribution, we see that the
limit ρ(x, t) solves

(4.29) ∂tρ−∆ρm − ε∆ρ = F

in D′((0, T )× Rd). This will be the key to proving the following proposition:

Proposition 4.9. Up to another subsequence, ∇ρm−1
τ converges strongly to ∇ρm−1.
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Proof. Multiplying (4.28) by ρm−2
k , and using the convexity of s 7→ sm − 1, we get

ˆ
ρm−1
k+1

m− 1
−
ρm−1
k

m− 1
dx+ τ

ˆ
ρk+1∇xp(ρk+1)∇ρm−2

k+1 dx

≤
ˆ

(ρk+1 − ρk) ρm−2
k+1 dx+ τ

ˆ
ρk+1∇xp(ρk+1)∇ρm−2

k+1 dx

≤ τ
ˆ
Fkρ

m−2
k+1 dx

which yields

ˆ
ρm−1
K+1

m− 1
− ρm−1

0

m− 1
dx+

m− 2

m

K∑
k=0

τ

ˆ
|∇xp(ρk+1)|2 dx ≤

K∑
k=0

τ

ˆ
Fkρ

m−2
k+1 dx

that isˆ
ρτ (T )m−1

m− 1
− ρm−1

0

m− 1
dx+

m− 2

m

ˆ T

0

ˆ
|∇xp(ρτ )|2 dx ≤

ˆ T

0

ˆ
Fτρ

m−2
τ dx+O(τ)

so that

lim inf
τ→0

m− 2

m

ˆ T

0

ˆ
|∇xp(ρτ )|2 dx ≤ −

ˆ
ρ(T )m−1

m− 1
dx+

ˆ
ρm−1

0

m− 1
dx+

ˆ T

0

ˆ
Fρm−2 dx.

We now use the limiting equation for ρ, (4.29): Multiplying that equation by ρm−2 and inte-
grating in x and t givesˆ

ρ(T )m−1

m− 1
− ρm−1

0

m− 1
dx+

m− 2

m

ˆ T

0

ˆ
|∇xp(ρ)|2 dx =

ˆ T

0

ˆ
Fρm−2 dx

Together, these two relations imply

lim inf
τ→0

m− 2

m

ˆ T

0

ˆ
|∇xp(ρτ )|2 dx ≤ m− 2

m

ˆ T

0

ˆ
|∇xp(ρ)|2 dx

which in turn means that ∇xp(ρτ ) converges strongly to ∇xp(ρ) in L2(0, T ;L2(Rd)). �

4.6. The limit τ → 0: Solutions of (4.1). Given a smooth test function ϕ(x, θ, t), compactly
supported in Rd× [0,∞)× [0,∞), we multiply (4.6) by ϕk = ϕ(x, θ, kτ), integrate with respect
to x and θ and sum over k:
∞∑
k=0

τ

ˆ
Rd

ˆ ∞
0

1

τ
(nk+1ϕk − nkϕk)− nk+ 1

2
∂θϕk + nk+1∇xp(ρk+1) · ∇xϕk − εnk+1∆xϕk dθ dx

= −
∞∑
k=0

τ

ˆ
Rd

2

ˆ ∞
0

ν(θ, pk)nk(x, θ) dθϕk(0) dx−
∞∑
k=0

τ

ˆ
Rd

ˆ ∞
0

ν(θ, pk)nk+ 1
2
ϕk dθ dx

and writing
∑∞

k=0 nk+1ϕk − nkϕk =
∑∞

k=1 nk(ϕk−1 − ϕk)− n0ϕ0, we deduce:ˆ ∞
0

ˆ
Rd

ˆ ∞
0
−nτ∂tϕ− n̄τ∂θϕ+ nτ∇xp(ρτ ) · ∇xϕdθ − εnτ∆xϕdx dt

= −
ˆ ∞

0

ˆ
Rd

2

ˆ ∞
0

ν(θ, pτ )nτ (x, θ, t) dθϕ(x, 0, t) dx dt−
ˆ ∞

0

ˆ
Rd

ˆ ∞
0

ν(θ, pτ ) n̄τϕdθ dx dt+O(τ)
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where n̄τ is the piecewise constant function equal to nk+ 1
2

on the interval [kτ, (k + 1)τ).

We note (see (4.19) and (4.26)) that nk+ 1
2

satisfies the same bounds on nk so that n̄τ (x, θ, t)

converges weakly in L1(0, T ;L1(Rd × (0,∞)) as well (up to another subsequence) and (4.9)
implies that this limit must be n(x, θ, t) (and therefore that the original subsequence converges).

We can thus pass to the limit in all the terms. For the diffusion term, we have to writeˆ ∞
0

ˆ
Rd

ˆ ∞
0

nτ∇xp(ρτ ) · ∇xϕdθ dx dt =

ˆ ∞
0

ˆ
Rd

ˆ ∞
0

nτ∇xϕdθ · ∇xp(ρτ ) dx dt

and note that
´∞

0 nτ∇xϕdθ converges weakly in L2(0, T ;L2(Rd)) to
´∞

0 n∇xϕdθ in order to
pass to the limit in that term (using the fact that ∇xp(ρτ ) converges strongly).

We deduce that n(x, θ, t) is a weak solution of (4.1) in the sense thatˆ ∞
0

ˆ
Rd

ˆ ∞
0
−n∂tϕ− n∂θϕ+ n∇xp(ρ) · ∇xϕdθ − εn∆xϕdx dt

= −
ˆ ∞

0

ˆ
Rd

2

ˆ ∞
0

ν(θ, p)n(x, θ, t) dθϕ(x, 0, t) dx dt−
ˆ ∞

0

ˆ
Rd

ˆ ∞
0

ν(θ, p) n̄ϕ dθ dx dt.

(4.30)

4.7. The limit ε → 0: Proof of Theorem 2.1. From now on, we denote by nε(x, θ, t) the
solution of (4.1) constructed in the previous section and by ρε(x, t) the corresponding volume
density. We saw that nε, ρε satisfies (4.30) and we now need to pass to the limit ε→ 0.

Much of the arguments are similar to the limit τ → 0: Indeed, Proposition 4.3 implies that
ρε is bounded in L∞(0, T ;Lq(Rd)) for all q ∈ [1,∞] and by passing to the limit τ → 0 in (4.15),
(4.18) and (4.21), we easily get the following bounds (uniform in ε):

(4.31) ‖∇ρ
m+q−1

2
ε ‖2L2(0,T ;L2(Rd)) ≤ Cq ∀q > 1

(4.32) sup
t∈[0,T ]

ˆ
Rd

ˆ ∞
0

(|x|2 + θ)nε(x, θ, t) dθ dx ≤ C

(4.33)

ˆ
Rd

ˆ ∞
0
|nε log nε| dx dθ ≤ C

In particular, we can proceed as Section 4.4 to prove the existence of a subsequence ε→ 0 along
which ˆ T

0

ˆ
Rd

ˆ ∞
0

nε(x, θ, t)ψ(x, θ, t) dθ dx dt→
ˆ T

0

ˆ
Rd

ˆ ∞
0

n(x, θ, t)ψ(t, x, θ) dθ dx dt

for all ψ ∈ L∞([0, T ]× Rd × (0,∞)) and

ρε(x, t) ⇀ ρ(x, t) =

ˆ ∞
0

n(x, θ, t)V (θ) dθ.

The main difference is in the way we prove the strong convergence of ρε, since in the proof
of Proposition 4.7, we used the bound on ∇ρτ which was not uniform in ε. Instead, we will
use (4.31) to prove the strong convergence of ρsε for s large enough (the argument below does
not appear to work with the time approximation, which is the reason we had to introduce the
regularization ε > 0 in the system):
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Proposition 4.10. The sequence ρm+2
ε is precompact in L2(0, T ;L2(Rd)).

We immediately note that this implies the existence of a subsequence along which ρm+2
ε

converges strongly in L2 and almost everywhere. This implies the convergence almost every-
where of ρε and the uniform bounds in L∞(0, T ;Lq(Rd)) implies that ρε converges strongly in
Lq(0, T ;Lq(Rd)) for all q ∈ [1,∞).

We can then prove the strong convergence of ∇pε = m
m−1∇ρ

m−1
ε as in Proposition 4.9 and

pass to the limit in (4.30) to get (2.6) and complete the proof of Theorem 2.1.

Proof of Proposition 4.10. Taking q = m+5 in (4.31) implies that ρm+2
ε is bounded in L2(0, T ;H1(Rd)).

Furthermore, we recall that ρε solves (see (4.29))

∂tρε −∆ρmε − ε∆ρε = Fε

with Fε bounded in L2(0, T ;L2(Rd)) and so

1

m+ 2
∂tρ

m+2
ε = ρm+1

ε ∆ρmε + ερm+1
ε ∆ρε + Fερ

m−1
ε

To show that the right-hand-side is bounded, we rewrite

ρm+1
ε ∆ρmε = div (ρm+1

ε ∇ρmε )−∇ρm+1
ε · ∇ρmε

and

ρm+1
ε ∆ρε = div (ρm+1

ε ∇ρε)−∇ρm+1
ε · ∇ρε =

1

m+ 2
∆ρm+2

ε − 2(m+ 1)

(m+ 2)2

∣∣∣∣∇ρm+2
2

ε

∣∣∣∣2
Since (4.31) implies that ∇ρsε is bounded in L2(0, T ;L2(Rd)) for all s > m

2 , we see that these

two terms are bounded in L2(0, T ;H−1(Rd)) + L1(0, T ;L1(Rd)).
We have thus shown that ρm+2

ε is bounded in L2(0, T ;H1(Rd)) and that ∂tρ
m+2
ε is bounded in

L2(0, T ;H−1(Rd))+L1(0, T ;L1(Rd)). Together with (4.32), this is enough to apply Aubin-Lions
lemma to prove that ρm+2

ε is precompact in L2(0, T ;L2(Rd)). �

Appendix A. Numerical scheme and algorithm

Focusing on the discretization of the variables θ and t, we write nk,i(x) = n(x, k∆t, i∆θ).
Using first-order approximations, Equation (1.2) leads to

nk+1,i − nk,i
∆t

+
nk,i − nk,i−1

∆θ
− div x(nk,i∇xpk) = −νk,ink,i − µink,i,(A.1)

for i = 1, . . . , iM − 1. Setting λ := ∆t/∆θ, and rearranging (A.1), we obtain

nk+1,i = nk,i + λ(nk,i−1 − nk,i) + div x(nk,i∇xpk)∆t− νk,ink,i∆t− µink,i∆t.(A.2)

Since cells that reach the age θmax = iM∆θ do not age or duplicate, the equation for nk+1,iM
is:

nk+1,iM = nk,iM + λnk,iM−1 + (∆t)[div x(nk,iM∇xpk)− νk,iMnk,iM − µiMnk,iM ](A.3)

The density at time k∆t is then given by

ρk =

iM∑
i=0

nk,i∆θ
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and using (A.1)-(A.2), we get

ρk+1 − nk+1,0∆θ = ρk − nk,0∆θ + nk,0∆t+ (∆t∆θ)

iM∑
i=1

[div x(nk,i∇xpk)− νk,ink,i − µink,i].

(A.4)

With a slight abuse of notation, we write νkρk =
∑iM

i=0 νk,ink,i∆θ and µρk =
∑iM

i=0 µink,i∆θ, so
that equation (A.4) can be rewritten as

ρk+1 =ρk + (nk+1,0 − nk,0)∆θ + nk,0∆t+ div x(ρk∇xpk)∆t− div x(nk,0∇xpk)∆t∆θ
− νkρk∆t+ νk,0nk,0∆t∆θ − µρk∆t+ µ0nk,0∆t∆θ.(A.5)

With the same notation, the equation for the density (1.7) can be discretized as ρk+1 = ρk +
div x(ρk∇xpk)∆t+ νkρk∆t− µρk∆t. Combining these two equations leads to

2νkρk∆t = (nk+1,0 − nk,0)∆θ + nk,0∆t− div x(nk,0∇xpk)∆t∆θ + νk,0nk,0∆t∆θ + µ0nk,0∆t∆θ,

which gives the appropriate discretization of the condition at θ = 0 (i = 0):

nk+1,0 = 2

iM∑
i=0

νk,ink,i∆t+ nk,0 (1− λ) + div x(nk,0∇xpk)∆t− νk,0nk,0∆t− µ0nk,0∆t

= 2

iM∑
i=1

νk,ink,i∆t+ nk,0 (1− λ+ νk,0∆t− µ0∆t) + div x(nk,0∇xpk)∆t.(A.6)

Equations (A.2)-(A.3)-(A.6) provide the numerical scheme for the aging/duplication/death
of the cells. Importantly, we note that in order to reduce the computational cost, it might be
necessary to take ∆θ to be much larger than ∆t (λ � 1). The discretization with respect to
the spatial variable x is done with a uniform grid ∆x1 = ∆x2 = ∆x and the gradients are
calculated by the centered difference

(∇xip)l,m =
pl+1,m − pl−1,m

2∆x
, i = 1, 2.

Algorithm 1 provides the pseudocode for the algorithm used for the simulation.
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