(1) Find $\lim _{n \rightarrow \infty} n^{205}\left(\sqrt{n^{410}+2}-\sqrt{n^{410}-1}\right)$.

Multiply the numerator and denominator by $\left(\sqrt{n^{410}+2}+\sqrt{n^{410}-1}\right)$
$n^{205}\left(\sqrt{n^{410}+2}-\sqrt{n^{410}-1}\right)=\frac{3 n^{205}}{\sqrt{n^{410}+2}+\sqrt{n^{410}-1}}=\frac{3}{\sqrt{1+\frac{2}{n^{410}}}+\sqrt{1-\frac{1}{n^{410}}}} \rightarrow$ $\frac{3}{2}$.
(2) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing function defined for all real numbers. Prove that the limit from the right $\lim _{x \rightarrow 0+} f(x)$ exists.
Let $S=\{f(x): x>0\}$. The set S is not empty (contains $f(1)$) and bounded from below (for example, by $f(0)$). Therefore, by the completeness axiom, $\alpha=\inf S$ exists. Claim: $\lim _{x \rightarrow 0^{+}} f(x)=\alpha$. To prove this fix any $\epsilon>0$. Since $\alpha+\epsilon$ is not a lower bound fro S, there is $\delta>0$ such that $f($ delta $)<\alpha+\epsilon$. Since f is increasing, $f(x)<f(\delta)<\alpha+\epsilon$ for each x with $0<x<\delta$. Hence, $0 \leq f(x)-\alpha<\epsilon$ for $0<x<\delta$.
(3) A subset $S \subset \mathbb{R}$ is open if for every $x \in S$ there is $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset S$. Let $S_{1}, S_{2}, \ldots, S_{k}$ be open subsets of \mathbb{R}. Prove that the intersection $\bigcap_{i=1}^{k} S_{i}$ is open.
Let $x \in \bigcap_{i=1}^{k} S_{i}$. Then $x \in S_{i}$ for each i and there is $\epsilon_{i}>0$ such that $\left(x-\epsilon_{i}, x+\epsilon_{i}\right) \subset S_{i}$. Choose $\epsilon=\min _{i=1,2, \ldots, k} \epsilon_{i}$. Then the interval $(x-\epsilon, x+\epsilon)$ is contained in each S_{i}, and hence in the intersection.
(4) Suppose that $-x^{4} \leq f(x) \leq x^{4}$ for all $x \in \mathbb{R}$.

Prove that f is differentiable at 0 and that $f^{\prime}(0)=0$.
Observe that $f(0)=0$. We have: $\left|\frac{f(x)-f(0)}{x-0}\right| \leq\left|\frac{f(x)}{x}\right| \leq \frac{\left|x^{4}\right|}{|x|}=|x|^{3} \rightarrow 0$ as $x \rightarrow 0$. Hence $f^{\prime}(0)=0$.
(5) Suppose that a function $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $x=0$. Also, suppose that $g(1 / n)=0$ for each natural number n.

Prove that a) $g(0)=0$, b) $g^{\prime}(0)=0$.
a) Since g is differentiable at 0 , it is continuous at 0 . Therefore, since $\lim _{n \rightarrow \infty} 1 / n=0$, we have $f(0)=\lim _{n \rightarrow \infty} g(1 / n)=\lim _{n \rightarrow \infty} 0=0$.
b) Since $g^{\prime}(0)$ exists, $\lim _{n \rightarrow \infty} \frac{g\left(x_{n}\right)-g(0)}{x-0}=g^{\prime}(0)$ for every sequence $\left\{x_{n}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=$
0. Observe that $\frac{g(1 / n)-g(0)}{1 / n-0}=0$ for each n. Hence, $\lim _{n \rightarrow \infty} \frac{g(1 / n)-g(0)}{1 / n-0}=0$ and $g^{\prime}(0)=0$.

