- (1) Find $\lim_{n \to \infty} n^{205} \left(\sqrt{n^{410} + 2} \sqrt{n^{410} 1} \right)$. Multiply the numerator and denominator by $\left(\sqrt{n^{410} + 2} + \sqrt{n^{410} - 1} \right)$ $n^{205} \left(\sqrt{n^{410} + 2} - \sqrt{n^{410} - 1} \right) = \frac{3n^{205}}{\sqrt{n^{410} + 2} + \sqrt{n^{410} - 1}} = \frac{3}{\sqrt{1 + \frac{2}{n^{410}}} + \sqrt{1 - \frac{1}{n^{410}}}} \rightarrow \frac{3}{2}$.
- (2) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function defined for all real numbers. Prove that the limit from the right $\lim_{x\to 0+} f(x)$ exists.

Let $S = \{f(x) : x > 0\}$. The set S is not empty (contains f(1)) and bounded from below (for example, by f(0)). Therefore, by the completeness axiom, $\alpha = \inf S$ exists. Claim: $\lim_{x\to 0^+} f(x) = \alpha$. To prove this fix any $\epsilon > 0$. Since $\alpha + \epsilon$ is not a lower bound fro S, there is $\delta > 0$ such that $f(delta) < \alpha + \epsilon$. Since f is increasing, $f(x) < f(\delta) < \alpha + \epsilon$ for each x with $0 < x < \delta$. Hence, $0 \le f(x) - \alpha < \epsilon$ for $0 < x < \delta$. (3) A subset $S \subset \mathbb{R}$ is open if for every $x \in S$ there is $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset S$.

Let S_1, S_2, \ldots, S_k be open subsets of \mathbb{R} . Prove that the intersection $\bigcap_{i=1}^{n} S_i$ is open.

Let $x \in \bigcap_{i=1}^{k} S_i$. Then $x \in S_i$ for each *i* and there is $\epsilon_i > 0$ such that $(x - \epsilon_i, x + \epsilon_i) \subset S_i$. Choose $\epsilon = \min_{i=1,2,\dots,k} \epsilon_i$. Then the interval $(x - \epsilon, x + \epsilon)$ is contained in each S_i , and hence in the intersection.

- (4) Suppose that $-x^4 \le f(x) \le x^4$ for all $x \in \mathbb{R}$. Prove that f is differentiable at 0 and that f'(0) = 0. Observe that f(0) = 0. We have: $\left|\frac{f(x) - f(0)}{x - 0}\right| \le \left|\frac{f(x)}{x}\right| \le \frac{|x^4|}{|x|} = |x|^3 \to 0$ as $x \to 0$. Hence f'(0) = 0.
- (5) Suppose that a function $g: \mathbb{R} \to \mathbb{R}$ is differentiable at x = 0. Also, suppose that g(1/n) = 0 for each natural number n.

Prove that a) g(0) = 0, b) g'(0) = 0. a) Since g is differentiable at 0, it is continuous at 0. Therefore, since $\lim_{n\to\infty} 1/n = 0$, we have $f(0) = \lim_{n\to\infty} g(1/n) = \lim_{n\to\infty} 0 = 0$.

b) Since g'(0) exists, $\lim_{n \to \infty} \frac{g(x_n) - g(0)}{x - 0} = g'(0)$ for every sequence $\{x_n\}$ with $\lim_{n \to \infty} x_n = 0$. Observe that $\frac{g(1/n) - g(0)}{1/n - 0} = 0$ for each n. Hence, $\lim_{n \to \infty} \frac{g(1/n) - g(0)}{1/n - 0} = 0$ and g'(0) = 0.