(1) Prove that the equation $f(x)=x^{5}+410 x+1=0$ has exactly one real solution.

Solution. Observe that $f(-1)<0$ and $f(+1)>0$. Therefore, by the Intermediate Value Theorem (polynomials are continuous), there is at least one root. On the other hand, $f^{\prime}(x)=5 x^{4}+410>0$ for all x. Hence f is strictly increasing and cannot take on the same value at two different points.
(2) Suppose that $P(x)$ is a polynomial of degree at most 410 and suppose that
$P\left(x_{0}\right)=P^{\prime}\left(x_{0}\right)=\cdots=P^{(410)}\left(x_{0}\right)=0$ for some x_{0}.
Prove that $P(x) \equiv 0$.
Solution. Rewrite P as a polynomial in $\left(x-x_{0}\right)$:
$P(x)=a_{410}\left(x-x_{0}\right)^{410}+a_{409}\left(x-x_{0}\right)^{409}+\cdots+a_{1}\left(x-x_{0}\right)+a_{0}$. Observe that $\left(P\left(x_{0}\right)\right)^{k}=a_{k} \cdot k$! for $0 \leq k \leq n$. Therefore all coefficients a_{k} are 0 and P is 0 .
(3) Assume that a (finite) partition P of an interval $[a, b]$ is a refinement of a partition Q (i.e., each partition point of Q is a partition point of P). Let f be a bounded function. Prove that $U(f, P) \leq U(f, Q)$ (the Refinement Lemma).
Solution. Consider an interval $I=\left[x_{i}, x_{i+1}\right]$ of Q. This interval contributes the term $f_{\max }\left(x_{i+1}-x_{i}\right)$ to the upper sum $U(f, Q)$, where $f_{\max }$ is the supremum of f on I. Let $y_{0}=x_{i}, y_{1}, y_{2}, \ldots, y_{k}=x_{i+1}$ be the partition points of P on I. Let f_{j} be the supremum of f on $\left[y_{j-1}, y_{j}\right]$. Then the total contribution from I to $U(f, P)$ is $\sum_{j=1}^{k} f_{j}\left(y_{j}-y_{j-1}\right) \leq \sum_{j=1}^{k} f_{\max }\left(y_{j}-y_{j-1}\right)=f_{\max }\left(x_{i+1}-x_{i}\right)$.
(4) Prove that for all $x>0$

$$
1+\frac{x}{3}-\frac{x^{2}}{9}<(1+x)^{1 / 3}<1+\frac{x}{3}
$$

Solution. Let $f(x)=(1+x)^{1 / 3}$. Then $f(0)=1, f^{\prime}(x)=\frac{1}{3}(1+x)^{-2 / 3}, f^{\prime \prime}(x)=$ $\frac{2}{9}(1+x)^{-5 / 3}, f^{\prime}(0)=\frac{1}{3}$. Therefore (the Taylor polynomial of degree 1 at 0 with Lagrange remainder):

$$
f(x)=1+\frac{1}{3} x-\frac{1}{9} x^{2}(1+c)^{-5 / 3} \text { for some } 0<c<x .
$$

The left inequality follows since the third term is negative. The right inequality follows since $\frac{1}{9}(1+c)^{-5 / 3}<\frac{1}{9}$.
(5) Suppose that a function $F: \mathbb{R} \rightarrow \mathbb{R}$ has derivatives of all orders and that
i) $F^{\prime}(x)-410 F(x)=0$ for all x, ii) $F(0)=1$.
a) Find a formula for the coefficients of the nth Taylor polynomial for F at $x_{0}=0$.
b) Prove that the Taylor expansion converges at every point x.

Solution. a) Since $F^{\prime}(x)=410 F(x)$, we have $F^{(n)}(x)=410 F^{(n-1)}(x)$ and $F^{(n)}(0)=$ 410^{n}. The coefficient at x^{n} is $\frac{410^{n}}{n!}$.
b) For an arbitrary x, let M be the supremum of F on $[0, x]$. Then $F^{(n)}(c) \leq M \cdot 410^{n}$. Hence, by Theorem 8.14, the Taylor expansion converges.

