1. Let $T$ be the linear transformation whose matrix relative to the standard basis $\mathcal{E}$ is

$$
A=\left(\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right)
$$

(a) Find the matrix $B$ of $T$ relative to the basis $\mathcal{B}=\{(1,1),(2,1)\}$ by computing $T$ applied to $(1,1)$ and $T$ applied to $(2,1)$.
(b) Find the matrix $B$ of $T$ relative to the basis $\mathcal{B}$ by using the change of basis formula

$$
{ }_{\mathcal{B}}[T]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{E}} \bullet \mathcal{E}[T]_{\mathcal{E}} \bullet P_{\mathcal{E} \leftarrow \mathcal{B}}
$$

(c) Find the coordinates of the standard basis vector $(1,0)$ in terms of the basis $\mathcal{B}$ using the change of basis formula

$$
[v]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{E}}[v]_{\mathcal{E}}
$$

(d) Put $P=P_{\mathcal{B} \leftarrow \mathcal{E}}$, so $B=P A P^{-1}$. Show

$$
B^{n}=P A^{n} P^{-1}
$$

(To get full credit you should use mathematical induction).
(e) Compute $A^{4}$. (Use the formula from (d))
2. (a) Show the only $2 \times 2$ matrices that commute with all diagonal $2 \times 2$ matrices are the diagonal $2 \times 2$ matrices.
(b) Show the only $2 \times 2$ matrices that commute with all $2 \times 2$ matrices are scalar matrices (matrices of the form $\lambda I=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ ). Hint: use part $(a)$.
In fact, this is true for all $n$.
3. Suppose $T: V \rightarrow W$ is a linear transformation, $\mathcal{A}$ and $\mathcal{B}$ are bases in $V$ and $\mathcal{C}$ and $\mathcal{D}$ are bases in $W$. State and prove the relation between the matrix of $T$ relative the bases $\mathcal{A}$ and $\mathcal{C}$ and the matrix of $T$ relative to the bases $\mathcal{B}$ and $\mathcal{D}$. In other words, what is the relation between $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{A}}$ and ${ }_{\mathcal{D}}[T]_{\mathcal{B}}$ ?
(Your answer should involve the change of basis matrices like $P_{\mathcal{B} \leftarrow \mathcal{A}}$ and $P_{\mathcal{D} \leftarrow \mathcal{C}}$ and their inverses.)

