1. Let T be the linear transformation whose matrix relative to the standard basis \mathcal{E} is

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$

- (a) Find the matrix B of T relative to the basis $\mathcal{B} = \{(1,1), (2,1)\}$ by computing T applied to (1,1) and T applied to (2,1).
- (b) Find the matrix B of T relative to the basis \mathcal{B} by using the change of basis formula

$${}_{\mathcal{B}}[T]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{E}} \bullet {}_{\mathcal{E}}[T]_{\mathcal{E}} \bullet P_{\mathcal{E}\leftarrow\mathcal{B}}$$

(c) Find the coordinates of the standard basis vector (1,0) in terms of the basis \mathcal{B} using the change of basis formula

$$[v]_{\mathcal{B}} = P_{\mathcal{B} \leftarrow \mathcal{E}}[v]_{\mathcal{E}}$$

(d) Put $P = P_{\mathcal{B} \leftarrow \mathcal{E}}$, so $B = PAP^{-1}$. Show

$$B^n = PA^n P^{-1}.$$

(To get full credit you should use mathematical induction).

- (e) Compute A^4 . (Use the formula from (d))
- 2. (a) Show the only 2×2 matrices that commute with all diagonal 2×2 matrices are the diagonal 2×2 matrices.

(b) Show the only 2×2 matrices that commute with all 2×2 matrices are scalar matrices (matrices of the form $\lambda I = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$). Hint: use part (a). In fact, this is true for all n.

3. Suppose $T: V \to W$ is a linear transformation, \mathcal{A} and \mathcal{B} are bases in V and \mathcal{C} and \mathcal{D} are bases in W. State **and prove** the relation between the matrix of T relative the bases \mathcal{A} and \mathcal{C} and the matrix of T relative to the bases \mathcal{B} and \mathcal{D} . In other words, what is the relation between ${}_{\mathcal{C}}[T]_{\mathcal{A}}$ and ${}_{\mathcal{D}}[T]_{\mathcal{B}}$?

(Your answer should involve the change of basis matrices like $P_{\mathcal{B}\leftarrow\mathcal{A}}$ and $P_{\mathcal{D}\leftarrow\mathcal{C}}$ and their inverses.)