Lecture 18: The minimal Polynomial of a Linear

Transformation




Subsituting a Linear Transformation into a Polynomial

Let V' be a vector space over F' of dimension n. T € L(V, V) and
f(z) € F[z]. We want to define f(T) € L(V, V).

If f(x) = apz® 4+ ap_12*~1 + ...+ a1z + ag then

f(T) = CLka aF ak_lTk_l 4+ ...+ a1 + agl

We could also evaluate at a square matrix A:

F(A) = apA* + a1 AV 4 e A+ aol

Proposition

The matrix of f(T) relative to the basis B is f(A), where A is the
matrix of T relative to the basis 5.
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Let 7 : F[x] — L (V, V) be given by
Or(f) = F(T).

Proposition

1 is is linear and satisfies

Or(fg) = 27 (f)Pr(9). (1)

®1 is not onto (for n strictly greater than 1) and has an infinite
dimensional kernel (null-space).

Proof. It is clear that @ is linear. We first prove Equation (1). The
left-hand side of Equation (1) is ®7(fg) = (fg)(T) and the right-hand
side of Equation (1) is f(T)g(T). So we must prove that
(f9)(T) = J(T)g(T). Suppose f(x) = X2 aia* and
g(z) = Zﬁ:o ajz’. Then

ke

Fo)@)=> (> aiby)a™ (2)

m=0 i,j:i+j=m



We continue the proof of the Proposition.

From Equation (2) we obtain

k+£

(F)T) = > aby) T™

m=0 1,j:i+j=m
But f(T) = 3¢ ,a;T" and ¢(T) = Zi:o a;T79 and hence

k+2

FMgT) =" (Y aiby) T™ = fg(T).

m=0 1,j:i4+j=m



Now we prove that @7 is not onto. Note that

F(M)g(T) = (f9)(T) = (¢S )(T) = g(T) f(T).

So any two elements in the image of ® commute. So take two
non-commuting elements in L (V, V) (we need n > 1 to do this.) They
cannot both be in the image of ®7.



We next prove that @ has a nonzero kernel - in fact we show how to
construct elements of that kernel. Take any subset {f1, fa, -, fu241} of
n? + 1 elements of F[z] (e.g. {1,z,22,---,2™ }). Then the set

{f1(T), f2(T), -+, fu211(T)} is a subset of L (V, V) containing n% + 1
elements. But the dimension of L (V, V) is n? so there must be a linear
relation among the elements of this set.

Hence there is a relation

n2+1
Z ¢ifi(T) =0, ¢ #0.
i=1
n2+1
Then > ¢;f; is a nonzero element in Ker(®r). So we have proved
i=1
Ker(®) is nonzero. To see that it is infinite dimensional see the remark
on the next slide. O



Remark:Why does &1 have an infinite - dimensional nullspace?
The dimension of F[x] is infinite dimensional and the dimension of
L(V, V). Any linear map from an infinite dimensional space to a finite
dimensional space has an infinite dimensional kernel.



The Minimal Polynomial

We just saw I, T, T2, ..., T™ must be linearly dependent since
dim L (V, V) = n%. Hence there exist scalars ag, ay, ..., a,> so that

aol + a1 T+ ... +a,T" =0.

So f(x) =apl +a1z+...+ anzx”2 is in Ker(®r). In other words, there
is a linear relation between the power I, T, T2, ..., ™

Remark: We just showed there is always always a linear relation between
the powers

2 n?
IT,T% ....T".

We will now see that often we can get a even smaller power degree
relation.



Fundamental Question

What is the smallest power k so that there is a nontrivial linear relation
among I, T, T?%, ..., T"?

First—there is a unique such k. Let
R = {€ . there is a linear relation among the powers I, T, T2, ..., Té}

Since n? € R, R is nonempty.
The smallest possible is k = 1.

o If K =0, we would have
aoT’ =0, ag#0.

But 7° = I, a contradiction.



o If Kk =1, we would have
aoT® + ayT = 0 <= T is a scalar ( a multiple of )I.

If T is not scalar, k& > 2.

Choose a minimal degree linear relation
arT* +ap T" '+ o+ aT +agl =0
Divide by aj to make it monic:
TF 4 b TF Y+ 0T+ bl =0

Define
m(z) = 2" + 12"+ b+ bl =0

so m(T) = 0.



We need

Suppose f(x) satisfies deg (f) < k. Then

f(T)=0<«= f(z) = 0(= the zero-polynomial).

Proof. By definition, k is the smallest degree so that there is a nonzero
polynomial satisfying f(7") = 0. O



Suppose 0 # f(x) € F [x] satisfies f(T') = 0. Then m(x)|f(z).

Proof. By the lemma, deg (f) > deg (m). So we can divide f by m.
f(z) = Q(z)m(z) + R(x)

with deg (R(z)) < deg (m(z)). Now evaluate
f(T) = Q(T)m(T) + R(T)

But f(T) = m(T) = 0. Hence R(T) = 0. But deg (R(x)) < deg (m(x)),
so R(T) =0 = R(x) =0 by the lemma. O



m(x) is unique.

Proof. Suppose mi(x) is another monic polynomial of degree k so that
m1(T) = 0. Then m(z)|m1(x) so (since we have the same degree),
mq(xz) = em(x). But since both m(x) and my(z) are monic, we have
c=1. O

Definition

m(x) is called the miniminal polynomial of the linear transformation 7.
Sometimes we will write m.

Note: It's hard to compute—it is even hard to compute k = deg (mr).
Now let A € M,,(F'). We can repeat the whole theory to define

ma = the monic polynomial f of smallest degree such that f(A) = 0.



Suppose T € L(V, V), Z = (b1, ba, ..., b,) is an ordered basis of V
and A= M(T) = 4[T),.
Then

mr =1ma

We will need

Let f(x) € Flx], A, T, B be as above. Then




Proof of Lemma. f(z) = a,, @™ + ayp_12™ 1 + ...+ a1z +apl . So
f(T) = apT* +ap 1 TF 1+ ...+ T + a0l
But M satisfies M(ST)= M(S)M(T), so M(T7) = M(T)’ so

M (f(T) = M(aTF +ap 1 TF 1+ ... +aiT + apl)

M(apT") + M(ap_1T* 1) 4+ ... + M(a1T) + M(aol)

= apM(TF) + ap_ 1 M(T* 1) + ...+ a1y M(T) + aoM(I)
ar AR fap AP 4 e At aol = f(A). O

F(T) =0 <= f(A)=0.




my is the monic nonzero polynomial of lowest degree in the space
Np ={f € Flz]: f(T) = 0}

m4 is the monic polynomial of lowest degree in the space
Na={f € Fla]: f(A) =0}

But we just saw that N7 = N4 so the smallest degree monic polynomial
in each of the subspaces is the same.



We now show that if a matrix A is similar to a matrix B (this means
B = PAP™!) then A and B have the same minimal polynomials.

Proposition

mpap-1(x) = ma(z)

Proof of the Proposition We will show
Na = Npap-1.

Then the unique lowest lowest degree monic polynomial in in each space
must be the same.



Suppose f € F[z]. We wish to show

f(PBP™Y) = Pf(B)P~', for all n by n matrices B. (3)

We first claim we have

(PBP~')* = pBFp~! (4)

Indeed
(PBP~ Y = (PBP~Y)Y(PBP').---(PBP™})

But note that the k-1 adjacent P’s and P~!'s cancel and the claim
follows.



Now we prove Equation (3). Suppose
f(z) = apz® +ap_12" "1+ - -+ ag. Then

f(PBP™') = ax(PBP™ Y +ap_1(PBP )1 + ...+ aol.

Apply the above claim to each of the first k terms on the right-hand side
of the previous equation and use PIP~! = I to obtain

f(PBP™Y = a,PB*P~' 4 a;_PB* 1Pt ... 4 qoPIP L.

Now factor P from the left and P~! from the right in the right-hand side
of the peevious equation to obtain

f(PBP™Y = Pf(B)P.



Now we can prove N4 = Npsp-1 and hence the Proposition. Indeed,

fENs <= f(A)=0 < Pf(AP'=0 < f(PAP™')=0.
But f(PAP™!) = <= f &€ Npyp-1. Hence
Na=Npap

and the Proposition follows. O



