Lecture 1: Abstract Vector Spaces

Real Vector Space

We will skip Chapter 1.

Definition

A vector space over \mathbb{R} or (for short) a real vector space is a triple ($V,+, \cdot$) where,
$1 V$ is a set,
$2+$ is a binary operator that assigns to any pair $v_{1}, v_{2} \in V$ a new element $v_{1}+v_{2} \in V$,
3 - is a binary operation that assigns to any pair $c \in \mathbb{R}$ and $c \in V$ a new vector $c \cdot v \in V$.
The operation + satisfies 5 axioms.

Axioms for Addition +

A1 Commutativity

$$
u+v=v+u
$$

A2 Associativity

$$
(u+v)+w=u+(v+w) .
$$

A3 Existence of the zero vector
There exists a unique element 0 of V such that

$$
v+0=v, \text { for all } v \in V
$$

A4 Existence of an additive inverse
For each $v \in V$, there exists a vector $-v$ such that

$$
v+(-v)=0 .
$$

We will abbreviate $u+(-v)$ for $u-v$, so we have defined subtraction.

Axioms for scalar multiplication .

S1 Associativity

$$
c_{1} \cdot\left(c_{2} v\right)=\left(c_{1} c_{2}\right) v
$$

S2 Distributivity ($1^{\text {st }}$ version)

$$
\left(c_{1}+c_{2}\right) \cdot v=c_{1} \cdot v+c_{2} \cdot v
$$

S3 Distributivity (2 $2^{\text {nd }}$ version)

$$
c \cdot\left(v_{1}+v_{2}\right)=c \cdot v_{1}+c \cdot v_{2} .
$$

S4

$$
1 \cdot v=v
$$

Vector Space Axioms

We will call the axioms $A 1, A 2, A 3, A 4$ and $S 1, S 2, S 3, S 4$ the vector space axioms.
We will prove shortly that

$$
0 \cdot v=0,
$$

and

$$
(-1) v=-v .
$$

The Main Examples

Eg. I \mathbb{R}^{n}
As a set \mathbb{R}^{n} is the set of ordered n-tuples

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}
$$

We have to define the operator + and .
Addition

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) .
$$

Scalar Multiplication

$$
c \cdot\left(x_{1}, \ldots, x_{n}\right):=\left(c x_{1}, \ldots, c x_{n}\right) .
$$

Theorem

This works, that is, the eight vector space axioms are satisfied.
Define vectors $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbb{R}^{n}$ by $e_{1}=(1,0, \ldots, 0)$, $e_{2}=(0,1, \ldots, 0)$, etc.

Eg. II The space of real-valued functions on a set X
Let X be a set and $\mathcal{F}_{\mathbb{R}}(X)$ be the set of real-valued function on the set X. We define + and \cdot by

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x) \\
(c \cdot f)(x) & :=c f(x) .
\end{aligned}
$$

Exercise

Show that Example II includes Example I.
Hint: Take X to be the n-element set $\{1,2, \ldots, n\}$.

Properties of + and .

Properties of + and • that can be deduced from the axioms.

Theorem (3.5)

Let V be a vector space over \mathbb{R}. Then the following statements hold
(1) Cancellation

$$
u+w=v+w \Longrightarrow u=v .
$$

(2) The equation $u+x=v$ has unique solution

$$
x=v-u
$$

(3) $0 \cdot u=0$.
(4) $(-1) \cdot u=-u$.
(5) $c_{1} \cdot u=c_{2} \cdot u$ and $u \neq 0 \Longrightarrow c_{1}=c_{2}$

Properties of + and .

Proof.

(1) Add $-w$ to each side.
(2) Add $-u$ to each side.
(3) This one is tricky!

Let 0 be the zero element in \mathbb{R} (!! not the zero element in V). Then

$$
\begin{array}{r}
0+0=0 \\
(0+0) \cdot u=0 \cdot u \\
0 \cdot u+0 \cdot u=0 \cdot u .
\end{array}
$$

Subtract the vector $0 \cdot u$ from each side to get

$$
0 \cdot u=0 .
$$

Properties of + and .

Proof (continued).
(4) We want to show

$$
\begin{equation*}
u+(-1) \cdot u=0 \tag{*}
\end{equation*}
$$

From S4, (1.) $u=u$, so

$$
\begin{aligned}
L H S(*) & =(1) \cdot u+(-1) u=(1+(-1)) u \\
0 \cdot u & =0 \text { from }(3) .
\end{aligned}
$$

Properties of + and .

Proof (continued).
(5) Suppose $u \neq 0$ and $c_{1} \cdot u=c_{2} \cdot u$. Hence $\left(c_{1}-c_{2}\right) \cdot u=0(* *)$. We want to prove $c_{1}-c_{2}=0 i n \mathbb{R}$. Suppose not. Then $\left(c_{1}-c_{2}\right)^{-1} \in \mathbb{R}$ exits. Multiply both sides of $* *$ by $\left(c_{1}-c_{2}\right)^{-1}$ to get

$$
\left(c_{1}-c_{2}\right)^{-1} \cdot\left(\left(c_{1}-c_{2}\right) \cdot u\right)=\left(c_{1}-c_{2}\right)^{-1} \cdot 0=0
$$

$$
L H S=\left(\left(c_{1}-c_{2}\right)^{-1}\left(c_{1}-c_{2}\right) \cdot u\right)=1 \cdot u=u
$$

But $R H S=0$ by (3) that we just proved. Hence $u=0$, contradicting our assumption that $u \neq 0$. Hence, our assumption that $c_{1}-c_{2} \neq 0$ has led to a contradiction. Hence $c_{1}-c_{2}=0$ and $c_{1}=c_{2}$.

