Lecture 3: Bases

(We will consider only vector spaces that have finite spanning sets.)

Basics on Bases

Definition

Let V be a vector space and $\left\{v_{1}, \ldots, v_{n}\right\} \subset V$. Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V if
(i) $\left\{v_{1}, \ldots, v_{n}\right\}$ spans V.
(ii) $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.

Today we will prove two of the main foundational theorems in linear algebra.

First Main Theorem (Text, Theorem 5.3)

Any two bases of V have the same cardinality.

Second Main Theorem (Text, Theorem 7.2)

Every vector space V has a basis (in fact, many bases).

Usefulness of Basis

But first-why are bases useful?

Proposition

Suppose $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V. Let $v \in V$. Then there exist unique scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} .
$$

The scalars $c_{1}, c_{2}, \ldots, c_{n}$ are said to be the coordinates of v relative to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$.

Usefulness of Basis

Proof. The c_{i} 's exist because the v_{i} 's span V. We will prove that they are unique. Suppose V has two sets of coordinates relative to $\left\{v_{1}, \ldots, v_{n}\right\}$, i.e.,

$$
v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}
$$

and

$$
v=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\ldots+c_{n}^{\prime} v_{n}
$$

Then $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\ldots+c_{n}^{\prime} v_{n}$, so

$$
\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\ldots+\left(c_{n}-c_{n}^{\prime}\right) v_{n}=0
$$

so $c_{i}-c_{i}^{\prime} s=0$.

Future example

In Lecture 7, we will introduce the notation $[v]_{\mathscr{B}}$ for the coordinates of a vector v relative to a basis \mathscr{B}.

Problem (to be solved in Lecture 7) Suppose $\mathscr{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ are both bases for V. Let $v \in V$. How are the coordinates $[v]_{\mathscr{A}}$ of V relative to \mathscr{A} related to the coordinates $[v]_{\mathscr{B}}$ of v relative to \mathscr{B} ?

We will now prove the First Main Theorem: Any two bases have the same cardinality (same number of elements).

The First Main Theorem will follow from the next theorem.

Theorem

Suppose V is a vector space and $\left\{u_{1}, \ldots, u_{m}\right\}$ is a spanning set for V. Then any subset of V with more than m elements is linearly dependent.

Proof. I will prove this theorem using a theorem from linear equations.

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =0 \\
& \vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n} & =0
\end{aligned}
$$

$m<n \Longrightarrow$ the system has a nontrivial solution.

Now let v_{1}, \ldots, v_{n} be an n-element set with $n>m$. We want to find x_{1}, \ldots, x_{n} not all zeros so that $x_{1} v_{1}+\ldots+x_{n} v_{n}=0$.

Write

$$
\begin{array}{rll}
v_{1}=a_{11} u_{1}+a_{21} u_{2}+\ldots+a_{m 1} u_{m} & =0 \\
v_{2}=a_{12} u_{1}+a_{22} u_{2}+\ldots+a_{m 2} u_{m} & =0 \\
& \vdots \\
v_{n}=a_{1 n} u_{1}+a_{2 n} u_{2}+\ldots+a_{m n} u_{m}= & =0
\end{array}
$$

Then

$$
\begin{aligned}
x_{1} v_{1}+\ldots+x_{n} v_{n} & =x_{1} a_{11} u_{1}+x_{1} a_{21} u_{2}+\ldots+x_{1} a_{m 1} u_{m} \\
& +x_{2} a_{12} u_{1}+x_{2} a_{22} u_{2}+\ldots+x_{2} a_{m 2} u_{m} \\
& +\vdots \\
& +x_{n} a_{1 n} u_{1}+x_{n} a_{2 n} u_{2}+\ldots+x_{n} a_{m n} u_{m} \\
& =\left(a_{11} x_{1}+\ldots+a_{1 n} x_{n}\right) u_{1}+\left(a_{21} x_{1}+\ldots+a_{2 n} x_{n}\right) u_{2} \\
& +\ldots+\left(a_{m 1} x_{1}+\ldots+a_{m n} x_{n}\right) u_{m}
\end{aligned}
$$

$$
x_{1} v_{1}+\ldots+x_{n} v_{n}=0 \Longleftrightarrow x_{1}, \ldots, x_{n} \text { satisfy }
$$

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =0 \\
& \vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n} & =0
\end{aligned}
$$

But $n>m$ so there are more unknowns than equations. Hence there is a nonzero solution.

Corollary

The cardinality of any linearly independent set is always less than or equal to the cardinality of any spanning set.

First Main Theorem

Suppose $\left\{w_{1}, \ldots, w_{m}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ are both bases of v. Then $n=m$.

Proof. Since $\left\{w_{1}, \ldots, w_{m}\right\}$ spans and $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent we have $n \leq m$. But $\left\{v_{1}, \ldots, v_{n}\right\}$ spans and $\left\{w_{1}, \ldots, w_{m}\right\}$ is linearly independent, hence $m \leq n$.
Example: $\operatorname{dim} \mathbb{R}^{n}=n$ because $\mathscr{E}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, where $\left.e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)\right)$, is a basis.

Second Main Theorem

Every vector space has a basis.
Proof. First we have to take care of the zero vector space $\{0\}$. The empty set is a basis for $\{0\}$. (We will agree that the 0 -vector is a combination of the vectors in the empty set.)
Now let V be a non-zero vector space which has a finite spanning set-say with m elements, List the cardinalities of all spanning sets with at most m elements. This is a subset of $\{1,2, \ldots, m\}$ and has a smallest element, n. Hence there is a set of vectors $\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ such that (1) $\left\{v_{1}, \ldots, v_{n}\right\}$ spans V
(2) No subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ spans V.

We claim that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent and hence a basis. If not, one of the vectors v_{i} is a combination of the rest and $\left\{v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right\}$ spans V. But $\#\left\{v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right\}=\mathrm{n}-1$.
Contradiction.

