
Lecture 3: Bases

(We will consider only vector spaces that have finite spanning sets.)



Basics on Bases

Definition

Let V be a vector space and {v1, . . . , vn} ⊂ V . Then {v1, . . . , vn} is a
basis for V if

(i) {v1, . . . , vn} spans V .

(ii) {v1, . . . , vn} is linearly independent.

Today we will prove two of the main foundational theorems in linear
algebra.

First Main Theorem (Text, Theorem 5.3)

Any two bases of V have the same cardinality.

Second Main Theorem (Text, Theorem 7.2)

Every vector space V has a basis (in fact, many bases).



Usefulness of Basis

But first–why are bases useful?

Proposition

Suppose B = {v1, . . . , vn} is a basis for V . Let v ∈ V . Then there exist
unique scalars c1, c2, . . ., cn such that

v = c1v1 + c2v2 + . . .+ cnvn.

The scalars c1, c2, . . ., cn are said to be the coordinates of v relative to
the basis {v1, . . . , vn}.



Usefulness of Basis

Proof. The ci’s exist because the vi’s span V . We will prove that they
are unique. Suppose V has two sets of coordinates relative to
{v1, . . . , vn}, i.e.,

v = c1v1 + c2v2 + . . .+ cnvn

and
v = c′1v1 + c′2v2 + . . .+ c′nvn.

Then c1v1 + c2v2 + . . .+ cnvn = c′1v1 + c′2v2 + . . .+ c′nvn, so

(c1 − c′1)v1 + (c2 − c′2)v2 + . . .+ (cn − c′n)vn = 0

so ci − c′is = 0.



Future example

In Lecture 7, we will introduce the notation [v]B for the coordinates of a
vector v relative to a basis B.

Problem (to be solved in Lecture 7)
Suppose A = {a1, . . . , an} and B = {b1, . . . , bn} are both bases for V .
Let v ∈ V . How are the coordinates [v]A of V relative to A related to
the coordinates [v]B of v relative to B?



We will now prove the First Main Theorem: Any two bases have the
same cardinality (same number of elements).

The First Main Theorem will follow from the next theorem.

Theorem

Suppose V is a vector space and {u1, . . . , um} is a spanning set for V .
Then any subset of V with more than m elements is linearly dependent.

Proof. I will prove this theorem using a theorem from linear equations.

a11x1 + . . .+ a1nxn = 0
...

am1x1 + . . .+ amnxn = 0

m < n =⇒ the system has a nontrivial solution.



Now let v1, . . ., vn be an n−element set with n > m. We want to find
x1, . . ., xn not all zeros so that x1v1 + . . .+ xnvn = 0.
Write

v1 = a11u1 + a21u2 + . . .+ am1um = 0

v2 = a12u1 + a22u2 + . . .+ am2um = 0
...

vn = a1nu1 + a2nu2 + . . .+ amnum = 0

Then

x1v1 + . . .+ xnvn = x1a11u1 + x1a21u2 + . . .+ x1am1um

+ x2a12u1 + x2a22u2 + . . .+ x2am2um

+
...

+ xna1nu1 + xna2nu2 + . . .+ xnamnum

= (a11x1 + . . .+ a1nxn)u1 + (a21x1 + . . .+ a2nxn)u2

+ . . .+ (am1x1 + . . .+ amnxn)um



x1v1 + . . .+ xnvn = 0⇐⇒ x1, . . . , xn satisfy

a11x1 + . . .+ a1nxn = 0
...

am1x1 + . . .+ amnxn = 0

But n > m so there are more unknowns than equations. Hence there is a
nonzero solution.

Corollary

The cardinality of any linearly independent set is always less than or
equal to the cardinality of any spanning set.



First Main Theorem

First Main Theorem

Suppose {w1, . . . , wm} and {v1, . . . , vn} are both bases of v. Then
n = m.

Proof. Since {w1, . . . , wm} spans and {v1, . . . , vn} is linearly
independent we have n ≤ m. But {v1, . . . , vn} spans and
{w1, . . . , wm} is linearly independent, hence m ≤ n.

Example: dimRn = n because E = {e1, e2, . . . , en}, where
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . ., en = (0, 0, . . . , 1)), is a
basis.



Second Main Theorem

Second Main Theorem

Every vector space has a basis.

Proof. First we have to take care of the zero vector space {0}. The
empty set is a basis for {0}. (We will agree that the 0-vector is a
combination of the vectors in the empty set.)
Now let V be a non-zero vector space which has a finite spanning set–say
with m elements, List the cardinalities of all spanning sets with at most
m elements. This is a subset of {1, 2, . . . , m} and has a smallest
element, n. Hence there is a set of vectors {v1, . . . , vn} ⊂ V such that

(1) {v1, . . . , vn} spans V

(2) No subset of {v1, . . . , vn} spans V .

We claim that {v1, . . . , vn} is linearly independent and hence a basis. If
not, one of the vectors vi is a combination of the rest and
{v1, . . . , v̂i, . . . , vn} spans V . But # {v1, . . . , v̂i, . . . , vn} = n-1.
Contradiction.


