Lecture 4: Linear Transformations

Today we start Chapter 3.

Basics on Linear Transformations

Definition (Text, Definition 11.2)

Let V and W be vector spaces over \mathbb{R}. A linear transformation T from V to W is a function $T: V \longrightarrow W$ such that for all $v_{1}, v_{2} \in V, c \in \mathbb{R}$,
(i) $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$
(ii) $T\left(c v_{1}\right)=c T\left(v_{1}\right)$.

We let $\operatorname{Hom}(V, W)$ (text: $L(V, W))$ be the set of linear transformations from V to W.

Proposition

$\operatorname{Hom}(V, W)$ is a vector space under the operations:

$$
\begin{aligned}
(S+T)(v) & :=S(v)+T(v) \\
(c \cdot S)(v) & : \quad=c(S(v) .)
\end{aligned}
$$

Proof. Show that $(S+T)$ and $c \cdot T$ are both linear transformations.

Algebra

If $V=W$ then $\operatorname{Hom}(V, W)=\operatorname{End}(V)$ has more structure. It is an associative algebra over \mathbb{R} (i.e., a ring and a vector space).

Definition

An \mathbb{R}-vector space $(A,+, \bullet)$ is an algebra if it has a binary operation $\bullet: A \times A \longrightarrow A$ (multiplication) that satisfies: for all $a_{1}, a_{2}, a_{3} \in A$ and $c \in \mathbb{R}$:
(i) - is associative

$$
\left(a_{1} \bullet a_{2}\right) a_{3}=a_{1} \bullet\left(a_{2} \bullet a_{3}\right)
$$

(ii) • is bilinear

$$
\begin{aligned}
\left(a_{1}+a_{2}\right) \bullet a_{3} & =a_{1} \bullet a_{3}+a_{2} \bullet a_{3} \\
a_{1} \bullet\left(a_{2}+a_{3}\right) & =a_{1} \bullet a_{2}+a_{1} \bullet a_{3} \\
c \cdot\left(a_{1} \bullet a_{2}\right) & =\left(c a_{1}\right) \bullet a_{2}=a_{1} \bullet\left(c a_{2}\right)
\end{aligned}
$$

(So, $b\left(a_{1}, a_{2}\right)=a_{1} \bullet a_{2}$ is linear with respect to each of a_{1} and a_{2}).
(iii) There is a unit element 1 for $A: 1 \bullet a=a=a \bullet 1$.

Warning: We do not require • to be commutative.

Identity, Center

Proposition

Define - on $\operatorname{End}(V)$ by

$$
S \bullet T=S \circ T .
$$

Then $(\operatorname{End}(V), \circ,+, \cdot)$ is an algebra.
Note: The unit element is $I=$ identity.

Definition

Given an algebra $(A, \bullet,+, \cdot)$, the center of A, denoted $Z(A):=\{a \in A: a b=b a \quad \forall b \in A\}$. That is, the elements of A which commute with all elements of A.

Inverse

Theorem

$Z(\operatorname{End}(V))=\{c \mathbb{I}\}: c \in \mathbb{R}$.

Definition

A linear tranformation $T \in \operatorname{End}(V)$ is said to be invertible is there exists an element $S \in \operatorname{End}(V)$ such that $S \circ T=I$ and $T \circ S=I$. We write $S=T^{-1}$. (We will also refer to such elements as units.)

Note: We will often omit the symbol "○" and simply write $S T$ for $S \circ T$.

Invertibility

Proposition

Let $T \in \operatorname{End}(V)$. Then T is invertible
\Longleftrightarrow it has an inverse mapping
\Longleftrightarrow it is an invertible element of $\operatorname{Maps}(V, W)$ (the set of all maps from V to W)
$\Longleftrightarrow T$ is 1:1 and onto.
Proof. (\Longrightarrow) Obvious.
(\Longleftarrow) Suppose there is an inverse mapping F. We claim F is in fact a linear transformation. First, we show that, give $u, v \in V$

$$
F(u+v)=F(u)+F(v)
$$

But $T(F(u+v))=u+v$ and $T(F(u)+F(v))=T(F(u))+T(F(v))=u+v$.

Thus $T(F(u+v))=T(F(u))+T(F(v))$ and since T is $1: 1$ we have $F(u+v)=F(u)+F(v)$.
Similary, $T(F(c u))=c(u)=c T(F(u))=T(c F(u))$ and thus
$F(c u)=c F(u)$ for all $u \in V, c \in \mathbb{R}$.
We will later see that if V is finite dimensional and $S \in \operatorname{End}(V)$, then
$\begin{aligned} S \text { is invertible } & \Longleftrightarrow S \text { is } 1: 1 \\ & \Longleftrightarrow S \text { is onto. }\end{aligned}$

$\operatorname{Aut}(V)$

We write $\operatorname{Aut}(V)$ for the set of all invertible linear transformations of V, so $\operatorname{Aut}(V) \subset \operatorname{End}(V)$.
Warning: $\operatorname{Aut}(V)$ is not a subspace.
T invertible $\Longrightarrow T$ invertible, but

$$
T+(-T)=0 \text { is not invertible. }
$$

Proposition

$\operatorname{Aut}(V)$ is a group.
(What does it mean?)

Definition

A group (G, \bullet) is a set G equipped with a binary operation

- : $G \times G \longrightarrow G$ satisfying:
(i) \bullet is associative
(ii) There is an identity element $e \in G$ such that

$$
e \bullet g=g \bullet e=g \text { for all } g \in G
$$

(iii) Every element g has an inverse.

