Lecture 5: More on Linear Transformations

Today, we tidy up some odds and ends.

Theorem (Text, Theorem 13.1)

Let $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for V. Let w_{1}, \ldots, w_{n} be arbitrary vectors in W. Then there exists a unique $T \in \operatorname{Hom}(V, W)$ with

$$
T\left(b_{i}\right)=w_{i}, \quad 1 \leq i \leq n .
$$

Proof. Uniqueness is clear.
Existence: Define $T(v)$ for $v \in V$ as follows. Write $v=x_{1} b_{1}+\ldots x_{n} b_{n}$ and "define"

$$
T(v)=\sum_{i=1}^{n} x_{i} w_{i} .
$$

Is T well-defined?
Yes. Since \mathscr{B} is a basis, the x_{i} 's are uniquely determined. Also, note that T is linear.

Now we can prove:

Theorem

Fix a basis $\mathscr{B}=\left(b_{1}, \ldots, b_{n}\right)$ for V. Then the map $M_{\mathscr{B}}: \operatorname{Hom}(V, V) \longrightarrow M_{n}(\mathbb{R})$ sending a linear transformation T to its matrix with respect to the basis \mathscr{B} is 1:1 and onto.

Proof.

1:1: Let $T_{1}, T_{2} \in \operatorname{Hom}(V, V)$. Suppose $M_{\mathscr{B}}\left(T_{1}\right)=M_{\mathscr{B}}\left(T_{2}\right)=\left(a_{i j}\right)$.
Then for $1 \leq j \leq n, T_{1}\left(b_{j}\right)=\sum_{i=1}^{n} a_{i j} b_{i}$ and
$T_{2}\left(b_{j}\right)=\sum_{i=1}^{n} a_{i j} b_{i}$.
Thus, $T_{1}\left(b_{j}\right)=T_{2}\left(b_{j}\right)$ hence $T_{1}=T_{2}$.
onto: Let $\left(a_{i j}\right) \in M_{n}(\mathbb{R})$.
Then define $w_{j}=\sum_{i=1}^{n} a_{i j} b_{i}, 1 \leq j \leq n$.
There exits T with $T\left(b_{i}\right)=w_{i}, 1 \leq i \leq n$.

Back to $T: V \longrightarrow W$

There are two useful subsets.

Definition

The Range of T, denoted $T(V)$ or $R(T)$ is defined as

$$
T(V):=\{T(v): v \in V\} \subset W
$$

Lemma: $T(V)$ is a subspace.
Proof. Use the fact that T is linear.

Definition

The Nullspace of T, denoted $N(T)$ is defined as

$$
N(T):=\{v \in V: T(v)=0\} \subset V .
$$

Lemma: $N(T)$ is a subspace.
Proof. Use the fact that T is linear.

A dimension formula

Theorem (Text, Theorem 13.9)

Let $T \in \operatorname{Hom}(V, W)$. Then

$$
\operatorname{dim} T(V)+\operatorname{dim} N(T)=\operatorname{dim} V
$$

To prove this, we will need a very useful proposition.

Proposition

Any linearly independent set $\left\{v_{1}, \ldots, v_{k}\right\} \in V$ can be completed to a basis $\left\{v_{1}, \ldots, v_{k}, v_{k}+1, \ldots, v_{n}\right\}$ for V.

Proof. Assume $\operatorname{dim} V=n$. If $\left\{v_{1}, \ldots, v_{k}\right\}$ spans V we are done. Otherwise there exists a vector v_{k+1} that is not in the span of $\left\{v_{1}, \ldots, v_{k}\right\} \in V$. Then $\left\{v_{1}, \ldots, v_{k}, v_{k}+1\right\}$ is still independent. If $\left\{v_{1}, \ldots, v_{k}, v_{k}+1\right\}$ spans V, we are done, otherwise, continue. We will be done in $n-k$ steps.
Remark: Any spanning set can be refined to a basis.

Proof of Theorem 13.9. Assume $\operatorname{dim} V=n$ and $\operatorname{dim} N(T)=k$. Choose a basis $\left\{b_{1}, \ldots, b_{k}\right\}$ for $N(T)$ and complete it to a basis $\left\{b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right\}$ for V. It sufficed to prove Claim: $\left\{T\left(b_{k+1}, \ldots, T\left(b_{n}\right)\right\}\right.$ is a basis for $R(T)$.
Spanning set: Clear.
Independent set: Suppose $x_{k+1} T\left(b_{k+1}+\ldots+x_{n} T\left(b_{n}\right)=0\right.$. Then $x_{k+1} b_{k+1}+\ldots+x_{n} b_{n} \in N(T)$ and hence $x_{k+1} b_{k+1}+\ldots+x_{n} b_{n}=x_{1} b_{1}+\ldots+x_{k} b_{k}$.
Thus

$$
x_{1} b_{1}+\ldots+x_{k} b_{k}-x_{k+1} b_{k+1}-\ldots-x_{n} b_{n}=0
$$

But $\left\{b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right\}$ is a basis, so all the coefficients x_{i}, $1 \leq i \leq n$ are zero. Hence x_{k+1}, \ldots, x_{n} are zero.

First, we need

Proposition

Suppose $T: V \longrightarrow W$. Then T is $1: 1 \Longleftrightarrow N(T)=\{0\}$.
Proof. (\Longrightarrow) Suppose $T(v)=0$. Then since $T(0)=0$, we have $v=0$, hence if $v \in N(T)$ then $v=0$.
(\Longleftarrow) Suppose $T\left(v_{1}\right)=T\left(v_{2}\right)$. Then since T is linear $T\left(v_{1}-v_{2}\right)=0$, hence $v_{1}-v_{2} \in N(T)$ and thus $v_{1}-v_{2}=0$. Finally, $v_{1}=v_{2}$.

Consequences

Proposition

Let $T \in \operatorname{End}(V)$ (so $V=W$). Then T is $1: 1 \Longleftrightarrow T$ is onto.
Proof. We use $\operatorname{dim} V=\operatorname{dim} R(T)+\operatorname{dim} N(T)$.
$(\Longrightarrow) T$ is $1: 1$ so $N(T)=0$, hence $\operatorname{dim} R(T) \operatorname{dim} V$, thus $R(T)=V$ (since $R(T) \subset V$).
$(\Longleftarrow) \mathrm{T}$ is onto, so $R(T)=V$ and $\operatorname{dim} R(T)=\operatorname{dim} V$. Thus $\operatorname{dim} N(T)=0$ and so $N(T)=\{0\}$.
Warning: This is not true if $W \neq V$.
Now do problem pg. 108 \# 10.

