# Lecture 6: The matrix of a Linear Transformation Relative to a Basis

Let V be a vector space and  $\mathscr{B}=\{b_1,\ldots,b_n\}$  be a basis for V. Then any v has unique coordinates  $[v]_{\mathscr{B}}=(x_1,\ldots,x_n)$  relative to  $\mathscr{B}$  defined by

$$v = \sum_{i=1}^{n} x_i b_i$$

Now let V and W be vector spaces and  $T:V\longrightarrow W$  be a linear transformation. Suppose  $\mathscr{B}=\{b_1,\,\ldots,\,b_n\}$  is a basis for V and  $\mathscr{C}=\{c_1,\,\ldots,\,c_m\}$  is a basis for W.

#### Definition

The matrix of the linear transformation T relative to the basis  $\mathscr B$  and  $\mathscr C$  and written  $_{\mathscr C}[T]_{\mathscr B}$  is the  $m\times n$  matrix  $(a_{ij})$  given by

$$T(b_j) = \sum_{i=1}^{m} a_{ij}c_i, \quad 1 \le j \le n,$$
 (\*)

It is important to understand the physical meaning of (\*). The first column of A is the coordinates of  $T(b_1)$  relative to  $c_1, \ldots, c_m$ ; the second column of A is the coordinates of  $T(b_2)$  relative to  $c_1, \ldots, c_m$ , etc.

So

$$T(b_1)$$
  $T(b_2)$  ...  $T(b_n)$  
$$A = \left( \qquad \downarrow \qquad \downarrow \qquad \dots \qquad \downarrow \qquad \right)$$

or

$$[T(b_1)]_{\mathscr{C}} \quad [T(b_2)]_{\mathscr{C}} \quad \dots \quad [T(b_n)]_{\mathscr{C}}$$

$$A = \left( \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \right)$$

We will usually have V=W and  $\mathscr{B}=\mathscr{C}$ . Then  $_{\mathscr{B}}[T]_{\mathscr{B}}$  is a square matrix.

If there is only one basis present we will write M(T) instead of  $_{\mathscr{B}}[T]_{\mathscr{B}}.$ 

# <u>Problem</u>

Let  $\operatorname{Pol}_3(\mathbb{R})$  be the set of polynomial functions of degree less than or equal to 3. Let  $\frac{\mathrm{d}}{\mathrm{d}x}:\operatorname{Pol}_3(\mathbb{R})\longrightarrow\operatorname{Pol}_3(\mathbb{R})$  be differentiation. Compute the matrix  $\int_{\mathscr{B}} \left[\frac{\mathrm{d}}{\mathrm{d}x}\right]_{\mathscr{B}} = M\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)$  relative to  $\mathscr{B} = \left\{x_1,\,x,\,x^2,\,x^3\right\}$ .

### Solution

 $\frac{\mathrm{d}}{\mathrm{d}x}(1)=$  the zero polynomial  $=(0,\,0,\,0,\,0)$  so the first column of  $M\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)$  is

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x}(x) = 1 = (1,\,0,\,0,\,0) \text{ so the second column of } M\left(\frac{\mathrm{d}}{\mathrm{d}x}\right) \text{ is } \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}.$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^2) = 2x = (0)1 + 2(x) + 0(x^2) + 0(x^3) = (0, 2, 0, 0) \text{ so the third}$$

column of 
$$M\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)$$
 is  $\begin{pmatrix} 0\\2\\0\\0 \end{pmatrix}$ .

Finally 
$$\frac{\mathrm{d}}{\mathrm{d}x}(3^2) = 3x^2 = (0, 0, 3, 0).$$

We obtain:

$$\begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}x} \end{bmatrix}_{\mathscr{B}} = M \left( \frac{\mathrm{d}}{\mathrm{d}x} \right) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Notation: Let ● denote matrix multiplication. Then we have the important

#### Proposition (1)

Let U, V, W be vector spaces with basis  $\mathscr{A} = \{a_1, \ldots, a_m\}$ ,  $\mathscr{B} = \{b_1, \ldots, b_n\}$  and  $\mathscr{C} = \{c_1, \ldots, c_p\}$  respectively. Let  $T: U \longrightarrow V$  and  $S: V \longrightarrow W$  be linear transformations. Then

$$_{\mathscr{C}}[S \circ T]_{\mathscr{A}} = _{\mathscr{C}}[S]_{\mathscr{B}} \bullet _{\mathscr{B}}[T]_{\mathscr{A}}$$

Proof. Put

$$Z = (z_{ik}) = M (S \circ T)$$

$$Y = (y_{jk}) = M (T)$$

$$X = (x_{ij}) = M (S)$$



We will compute  $(S \circ T)(a_k)$  in two ways.

The matrix  $(z_{ik})$  is defined by

$$(S \circ T)(a_k) = \sum_{i=1}^p z_{ik} c_i.$$

Now we compute  $(S \circ T)(a_k)$  another way. We have

$$(S \circ T)(a_k) = S(T(a_k)) \qquad (*)$$

But the matrix  $Y = (y_{jk})$  is defined by

$$T(a_k) = \sum_{j=1}^{n} y_{jk} b_j.$$
 (\*\*)

We substitute the RHS of (\*\*) into (\*) to get

$$(S \circ T)(a_k) = S(T(a_k)) = S\left(\sum_{j=1}^n y_{jk}b_j\right)$$
$$= \sum_{j=1}^n y_{jk}S(b_j). \quad (\#)$$

But the matrix  $X = (x_{ij})$  is defined by

$$S(b_j) = \sum_{i=1}^{p} x_{ij} c_i. \qquad (\#\#)$$

We substitute (##) into (#) to get

$$(S \circ T)(a_k) = \sum_{j=1}^n y_{jk} S\left(\sum_{i=1}^p x_{ij} c_i\right)$$
$$= \sum_{j=1}^n \sum_{i=1}^p y_{jk} x_{ij} c_i$$
$$= \sum_{i=1}^p \left(\sum_{j=1}^n x_{ij} y_{jk}\right) c_i.$$

Hence

$$\sum z_{ik}c_i = \sum_{i=1}^p \left(\sum_{j=1}^n x_{ij}y_{jk}\right)c_i.$$

Since  $c_i$  is a basis for W, we have

$$z_{ik} = \sum_{j=1}^{n} x_{ij} y_{jk}.$$

But the RHS is the ik-th entry of the product matrix  $X \bullet Y$ .

**Remark:** This wouldn't have worked if we had written the vectors  $T(b_j)$  along the rows instead along the columns.

# Proposition (2)

Let V be a vector space and  $T \in L(V V) = \operatorname{Hom}(V, V)$ . Let  $\mathscr{B} = \{b_1, \ldots, b_n\}$  be a basis for V. Let  $v \in V$ . Then

$$[T(v)]_{\mathscr{B}} = \,_{\mathscr{B}}[T]_{\mathscr{B}}\,[v]_{\mathscr{B}}\,.$$

**Proof.** Suppose  $_{\mathscr{B}}[T]_{\mathscr{B}}=A=(a_{ij})$  and  $[v]_{\mathscr{B}}=(x_1,\,x_2,\,\ldots,\,x_n)$  so

$$v = \sum_{j=1}^{n} x_j b_j.$$

Then

$$T(v) = \sum_{j=1}^{n} x_j T(b_j). \qquad (*)$$

But by definition of the matrix  $_{\mathscr{B}}[T]_{\mathscr{B}}$ 

$$T(b_j) = \sum_{i=1}^n a_{ij}b_i \qquad (**)$$

Subsitute (\*\*) into (\*) to obtain

$$T(v) = \sum_{j=1}^{n} x_j \left( \sum_{i=1}^{n} a_{ij} b_i \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_j a_{ij} b_i$$
$$= \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} x_j \right) b_i$$

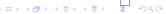
Hence

$$[T(v)]_{\mathscr{B}} = \left(\sum_{j=1}^n a_{1j}x_j, \dots, \sum_{j=1}^n a_{nj}x_j\right).$$

But

$$A[v]_{\mathscr{B}} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \begin{pmatrix} \sum_{j=1}^n a_{1j}x_j \\ \vdots \\ \sum_{n=1}^n a_{nj}x_j \end{pmatrix}$$

At this stage we are not differentiating between row vectors and column vectors.



# Isomorphism of Algebras

## Theorem (Text, Theorem 13.3)

Suppose  $\dim V=n$  and  $\{b_1,\,\ldots,\,b_n\}$  is a basis for V . Then the map

$$M: \operatorname{Hom}(V, V) \longrightarrow M_n(\mathbb{R})$$

that sends T to M(T) is 1:1, onto, linear and send composition  $\circ$  of linear transformations to multiplication  $\bullet$  of matrices M is said to be an isomorphism of algebras.

# Future Problem

#### Problem

Suppose  $T:V\longrightarrow V$  and  $\mathscr B$  and  $\mathscr C$  are bases for V. How are matrices  ${}_{\mathscr B}[T]_{\mathscr B}$  and  ${}_{\mathscr C}[T]_{\mathscr C}$  related? This problem will be addressed in Lecture 8.