Lecture 6: The matrix of a Linear Transformation Relative to a Basis

Let V be a vector space and $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for V. Then any v has unique coordinates $[v]_{\mathscr{B}}=\left(x_{1}, \ldots, x_{n}\right)$ relative to \mathscr{B} defined by

$$
v=\sum_{i=1}^{n} x_{i} b_{i}
$$

Now let V and W be vector spaces and $T: V \longrightarrow W$ be a linear transformation. Suppose $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis for V and $\mathscr{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ is a basis for W.

Definition

The matrix of the linear transformation T relative to the basis \mathscr{B} and \mathscr{C} and written $\mathscr{C}[T]_{\mathscr{B}}$ is the $m \times n$ matrix $\left(a_{i j}\right)$ given by

$$
\begin{equation*}
T\left(b_{j}\right)=\sum_{i=1}^{m} a_{i j} c_{i}, \quad 1 \leq j \leq n \tag{*}
\end{equation*}
$$

It is important to understand the physical meaning of $(*)$. The first column of A is the coordinates of $T\left(b_{i}\right)$ relative to c_{1}, \ldots, c_{m}; the second column of A is the coordinates of $T\left(b_{2}\right)$ relative to c_{1}, \ldots, c_{m}, etc.

So

$$
A\left(\begin{array}{cccc}
T\left(b_{1}\right) & T\left(b_{2}\right) & \ldots & T\left(b_{n}\right) \\
\downarrow & \downarrow & & \downarrow
\end{array}\right)
$$

or

$$
A\left(\begin{array}{cccc}
{\left[T\left(b_{1}\right)\right]_{\mathscr{C}}} & {\left[\begin{array}{ll}
\left.T\left(b_{2}\right)\right]_{\mathscr{C}} & \cdots
\end{array}\right.} & {\left[T\left(b_{n}\right)\right]_{\mathscr{C}}} \\
& & &
\end{array}\right)
$$

We will usually have $V=W$ and $\mathscr{B}=\mathscr{C}$. Then ${ }_{\mathscr{B}}[T]_{\mathscr{B}}$ is a square matrix.
If thre is only one basis present we will write $M(T)$ instead of ${ }_{\mathscr{B}}[T]_{\mathscr{B}}$.

Problem

Let $\operatorname{Pol}_{3}(\mathbb{R})$ be the polynomial functions of degree less than or equal to 3. Let $\frac{\mathrm{d}}{\mathrm{d} x}: \operatorname{Pol}_{3}(\mathbb{R}) \longrightarrow \operatorname{Pol}_{3}(\mathbb{R})$ be differentiation. Compute the matrix $\mathscr{B}_{\mathscr{B}}\left[\frac{\mathrm{d}}{\mathrm{d} x}\right]_{\mathscr{B}}^{\mathrm{d} x}=M\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)$ relative to $\mathscr{B}=\left\{x_{1}, x, x^{2}, x^{3}\right\}$.
Solution
$\frac{\mathrm{d}}{\mathrm{d} x}(1)=$ the zero polynomial $=(0,0,0,0)$ so the first column of $M\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)$ is

$$
\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

$\frac{\mathrm{d}}{\mathrm{d} x}(x)=1=(1,0,0,0)$ so the second column of $M\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)$ is $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$.
$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}\right)=2 x=(0) 1+2(x)+0\left(x^{2}\right)+0\left(x^{3}\right)=(0,2,0,0)$ so the third
column of $M\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)$ is $\left(\begin{array}{l}0 \\ 2 \\ 0 \\ 0\end{array}\right)$.
Finally $\frac{\mathrm{d}}{\mathrm{d} x}\left(3^{2}\right)=3 x^{2}=(0,0,3,0)$.
We obtain:

$$
\left[\frac{\mathrm{d}}{\mathscr{B}}\right]_{\mathscr{B}}=M\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Notation: Let • denote matrix multiplication. Then we have the important

Proposition

[1] Let U, V, W be vector spaces with basis $\mathscr{A}=\left\{a_{1}, \ldots, a_{m}\right\}$, $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ and $\mathscr{C}=\left\{c_{1}, \ldots, c_{p}\right\}$ respectively. Let $T: U \longrightarrow V$ and $S: V \longrightarrow W$ be linear transformations. Then

$$
\mathscr{C}_{\mathscr{B}}[S \circ T]_{\mathscr{A}}={ }_{\mathscr{G}}[S]_{\mathscr{B}} \bullet{ }_{\mathscr{B}}[T]_{\mathscr{A}}
$$

Proof. Put

$$
\begin{aligned}
Z & =\left(z_{i k}\right)=M(S \circ T) \\
Y & =\left(y_{j k}\right)=M(T) \\
X & =\left(x_{i j}\right)=M(T)
\end{aligned}
$$

[put diagram here]
We will compute $(S \circ T)\left(a_{k}\right)$ in two ways.
The matrix $\left(z_{i k}\right)$ is defined by

$$
(S \circ T)\left(a_{k}\right)=\sum_{i=1}^{p} z_{i k} c_{i} .
$$

Now we compute $(S \circ T)\left(a_{k}\right)$ another way. We have

$$
\begin{equation*}
(S \circ T)\left(a_{k}\right)=S\left(T\left(a_{k}\right)\right) \tag{*}
\end{equation*}
$$

But the matrix $Y=\left(y_{j k}\right)$ is defined by

$$
T\left(a_{k}\right)=\sum_{i=1}^{n} y_{i k} b_{j} . \quad(* *)
$$

We substitute the RHS of $(* *)$ into $(*)$ to get

$$
\begin{aligned}
(S \circ T)\left(a_{k}\right) & =S\left(T\left(a_{k}\right)\right)=S\left(\sum_{i=1}^{n} y_{i k} b_{j}\right) \\
& =\sum_{i=1}^{n} y_{i k} S\left(b_{j}\right)
\end{aligned}
$$

But the matrix $X=\left(x_{i j}\right)$ is defined by

$$
S\left(b_{j}\right)=\sum_{i=1}^{p} x_{i j} c_{i} .
$$

We substitute (\#\#) into (\#) to get

$$
\begin{aligned}
(S \circ T)\left(a_{k}\right) & =\sum_{j=1}^{n} y_{i k} S\left(\sum_{i=1}^{p} x_{i j} c_{i}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{p} y_{j k} x_{i j} c_{i} \\
& =\sum_{i=1}^{p}\left(\sum_{j=1}^{n} x_{i j} y_{j k} c_{i}\right) .
\end{aligned}
$$

Hence

$$
\sum z_{i k} c_{i}=\sum_{i=1}^{p}\left(\sum_{j=1}^{n} x_{i j} y_{j k} c_{i}\right)
$$

Since c_{i} is a basis for W, we have

$$
z_{i k}=\sum_{j=i}^{n} x_{i j} y_{j k}
$$

But the RHS is the $i k$-th entry of the product matrix $X \bullet Y$. Remark: This wouldn't have worked if we had written the vectors $T\left(b_{j}\right)$ along the rows instead along the columns.

Proposition

Let V be a vector space and $T \in L(V V)=\operatorname{Hom}(V, V)$. Let $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for V. Let $v \in V$. Then

$$
[T(v) \mathscr{B}]_{=\mathscr{B}}[T]_{\mathscr{B}}[v]_{\mathscr{B}} .
$$

Proof. Suppose ${ }_{\mathscr{B}}[T]_{\mathscr{B}}=A=\left(a_{i j}\right)$ and $[v]_{\mathscr{B}}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ so

$$
v=\sum_{j=1}^{n} x_{j} b_{j} .
$$

Then

$$
\begin{equation*}
T(v)=\sum_{j=1}^{n} x_{j} T\left(b_{j}\right) . \tag{*}
\end{equation*}
$$

But by definition of the matrix ${ }_{\mathscr{B}}[T]_{\mathscr{B}}$

$$
T\left(b_{j}\right)=\sum_{i=1}^{n} a_{i j} b_{i}(* *)
$$

Subsitute ($* *$) into ($*$) to obtain

$$
\begin{aligned}
T(v) & =\sum_{j=1}^{n} x_{j}\left(\sum_{i=1}^{n} a_{i j} b_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{i=1}^{n} x_{j} a_{i j} b_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) b_{i}
\end{aligned}
$$

Hence

$$
[T(v)]_{\mathscr{B}}=\left(\sum_{j=1}^{n} a_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} a_{n j} x_{j}\right) .
$$

But

$$
\begin{aligned}
A[v]_{\mathscr{B}} & =\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} x_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{n j} x_{j}
\end{array}\right)
\end{aligned}
$$

At this stage we are not differentiating between row vectors and column vectors.

Isomorphism of Algebras

Theorem (Text, Theorem 13.3)

Suppose $\operatorname{dim} V=n$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis for V. Then the map

$$
M: \operatorname{Hom}(V, V) \longrightarrow M_{n}(\mathbb{R})
$$

that sends T to $M(T)$ is 1:1, onto, linear and send compositions \circ of linear transformations to multiplications - of matrices M is said to be an isomorphism of algebras.

Problem
Suppose $T: V \longrightarrow V$ and \mathscr{B} and \mathscr{C} are bases for V.
How are matrices $\mathscr{B}[T]_{\mathscr{B}}$ and $\mathscr{C}_{\mathscr{C}}[T]_{\mathscr{C}}$ related?
This problem will be addressed in Lecture 8.

